
A Data-Intensive Programming Model for FPGAs: A Genomics Case Study

Elliott Brossard, Dustin Richmond, Joshua Green,
Carl Ebeling, Larry Ruzzo

Department of Computer Science and Engineering
University of Washington, Seattle, WA, USA

{snowden, watertav, greenj5, ebeling, ruzzo}@cs.washington.edu

Corey Olson, Scott Hauck
Department of Electrical Engineering

University of Washington, Seattle, WA, USA
coreybolson@gmail.com, hauck@uw.edu

Abstract—Genomics computing is indispensable in basic medi-
cal research as well as in practical applications such as disease
prevention, pharmaceutical development, and criminal foren-
sics. DNA sequencing, assembly and analysis are key
components of genomics computing. Coupled with the in-
creased use of computation for both synthesis and analysis of
data in genomics is the astounding increase in the rate at which
next-generation sequencing platforms are producing genomic
data. Keeping up with the combination of increasing levels of
algorithmic demands and an exponential increase in data rep-
resents a huge computational challenge that requires a
corresponding revolution in how we process the data.

Field Programmable Gate Arrays (FPGAs) are particularly
well suited to the type of highly parallel, bit-level computations
found in genomics algorithms. Unfortunately, the use of FPGA
platforms among genomics researchers has been limited by the
specialized hardware design expertise currently required to
use these platforms. Another limiting factor has been a prolif-
eration of FPGA platform architectures, each generally
requiring a re-implementation of the algorithm.

This paper describes a new programming model called Elan
and an associated compiler that we are developing for FPGA-
based genomic applications. The Elan model and compiler
allow a programmer to use familiar concepts from parallel and
distributed computing to develop an application at a relatively
high level of abstraction, which can then be compiled automat-
ically to large-scale FPGA platforms. One of the goals of Elan
is to allow an application to be run seamlessly across both the
CPU and FPGA portions of a platform, and to be parallelized
easily across a system comprising many FPGAs and CPUs. We
use the short read alignment application as the motivating
example.

Keywords-FPGAs; configurable computing; bioinformatics

I. INTRODUCTION

Next generation sequencing systems—devices that can
rapidly read DNA sequences—are going through an expo-
nential increase in throughput and decrease in processing
costs that will radically change most biology-related fields.
Genomics computing, which covers the computational prob-
lems associated with processing these flows, is indispensable
in basic biological research as well in for practical applica-
tions such as disease prevention, pharmaceutical
development, and criminal forensics. Genomics computing
also plays a critical role in agriculture, enabling faster devel-
opment of high-yield disease-resistant crops. DNA
sequencing, assembly and analysis are key components of

these flows. In recent years, there have been a number of
academic open source software packages written that attempt
to accelerate genomics sequence alignment and assembly.
These packages can dramatically speed the analysis of genet-
ic information, but they require large amounts of computing
power in the form of CPU clusters or cloud computing plat-
forms.

Keeping up with the combination of increasingly sophis-
ticated algorithmic demands and exponentially increasing
data represents a huge computational challenge. Currently
the only answer is ever-larger CPU clusters, which are an
expensive and power-hungry solution to a fine-grained com-
putation problem. One alternative is GP-GPUs, but their
SIMD operation and small on-chip storage capacities make
them poorly suited to most genomics computations.

Reconfigurable computing, which uses Field-
Programmable Gate Arrays (FPGAs) to accelerate important
computing applications, has demonstrated huge performance
increases and power consumption savings for computational-
ly challenging tasks in signal processing, medical diagnostic
imaging, networking, cryptography, scientific computing,
and many other applications. FPGAs are particularly well
suited to the type of highly parallel, bit-level computations
found in genomics algorithms. Sequence alignment, for ex-
ample, has long been computed efficiently on special-
purpose FPGA platforms.

Unfortunately, the wider use of FPGA platforms among
genomics researchers has been limited by the expertise re-
quired to use these platforms, which currently requires
specialized hardware-design knowledge. This “programma-
bility barrier” has been the focus of much research, but in
spite of the substantial advances that have been made in be-
havioral synthesis and C-to-Hardware tools, today's tools are
still inadequate for mapping large, complex applications to
hardware. Our approach is to adopt a set of techniques and
concepts that are used for programming parallel and distrib-
uted computers, and adapt them to the problem of
programming hardware accelerators. This leverages a hard-
ware-centric computation model that enables parallel
algorithms to be described at a relatively high level of ab-
straction and then mapped automatically across a large
number of computation nodes including processors and con-
figurable hardware.

Another limiting factor has been a proliferation of FPGA
platforms, each of which has a different system architecture
that generally requires a re-implementation of the algorithm,
even for next-generation boards from the same vendor. Fig-
ure 1 shows some example FPGA platforms with very
different characteristics. These range from small, single-

FPGA systems to large multi-processor systems with at-
tached FPGA accelerators. These accelerators are all
attached to one or more processors, which typically perform
a large part of the application, farming the data-intensive
computation to the accelerator. Each platform provides a
different interface, to which the application designer must
adapt. One of the goals of our programming model is to pro-
vide clean, platform-agnostic ways to communicate between
software and hardware components, and to communicate
between components residing in different nodes.

Data-intensive applications also require large memories
that can be accessed efficiently, and we assume accelerators
are attached to large memories that are potentially shared
with the host processor. Our model provides explicit support
for large, distributed memories and allows the programmer
use both pipelined and parallel memory accesses. Making the
memory visible to the programmer allows very high memory
bandwidth to be achieved.

Figure 1. Example FPGA-based platforms

This paper starts with a description of the fundamental

aspects of Elan. We then present the short read alignment
application and show how it can be programmed in our mod-
el. Next we discuss advanced features of Elan that are used
to extend a program to utilize multiple computational nodes
and memories to achieve high data and computational band-
width.

II. THE ELANPROGRAMMING MODEL

We have defined a programming model called Elan for
implementing large-scale, data-intensive applications on
FPGA-based platforms. This section presents the salient fea-
tures of Elan, including the execution model for direct
hardware implementation and the features that allow the
programmer to describe different parallel implementations of
a program.

The Elan model adopts many parallel and distributed
programming concepts that are used for large parallel sys-
tems. In so doing, we constrain the programmer to some
extent, but such constraints are critical for managing and
reasoning about the complexity of large parallel hard-
ware/software systems. An advantage of applying concepts
from the parallel programming world is that it allows appli-
cations to be partitioned and mapped to a combination of
software and hardware resources using a single, consistent
programming model. We rely on a modular, object-oriented
approach that allows hardware and software implementations
of a module to be interchanged, for modules to be reused
across different applications and platforms, and for different
hardware implementations to be generated based on perfor-
mance characteristics of the target platform. Although Elan

can be used for small systems comprising just a single
FPGA, it is especially relevant for large systems with many
CPUs and FPGAs.

A. Modules and Functions

The Elan programming model is based on hardware
modules: A system is comprised of modules, each containing
the data and functions that implement the functionality of
that module. Modules are similar to software objects, except
that they are implemented directly in hardware and are thus
statically instantiated at compile time. Although modules can
be virtualized and implemented on a processor, we focus on
hardware modules and the specialized communication and
computation structures used to implement them. Since mod-
ules are easily implemented in processors, a system can be
built using a combination of hardware and software, and
functionality can be moved between hardware and software
by specifying whether a module is implemented virtually in a
processor or physically in the FPGA fabric.

A module can have state in the form of data, which may
be in registers or in privately owned memories, and can be
manipulated or exposed through functions. Functions are
computational units that may execute concurrently, but each
function can only execute a single invocation at a time. Thus
data synchronization for a single function is achieved auto-
matically. Although conceptually only a single call is
executed at a time, however, function execution can be pipe-
lined to achieve greater performance, as long as that
pipelining respects inter-call data dependencies.

Modules interact by calling each other's functions to ini-
tiate actions, cause computations to be done, or operate on
data that belongs to the module. Function calls are by de-
fault asynchronous in the style of active messages: they do
not return values, and the caller can continue execution im-
mediately after calling an asynchronous function.

module Accumulator {
 int:32 sum;
 unsigned int:32 valuesAdded;
 sync void init() {
 sum = 0;
 valuesAdded = 0;
 }

 void add(int:32 value) {
 sum += value;
 valuesAdded++;
 }
}

Figure 2. Example accumulator module, with two methods

Asynchronous function calls are often used to implement
pipelined dataflow graphs, streaming the data from one
module to another via function calls. Synchronous function
calls require the caller to wait for the function to complete, at
which point the return value, if any, is surfaced to the caller.
Synchronous functions are used sparingly, but they can be
used to synchronize modules explicitly.

Figure 2 shows a simple module with two functions. The
first function is synchronous and is used to initialize the

module data. The second function is called to update the
module data. Even though many calls to add can be made
concurrently, since call invocations are executed sequential-
ly, there is no need to synchronize the module’s variables.

B. Arrays and the Memory Model

Managing memory access to overcome the high latency
of large memories is essential to achieving good perfor-
mance for data-intensive applications. Memories can be
highly pipelined to achieve very high data bandwidth, but
each access may take many cycles to complete. For exam-
ple, the Convey [1] memory system can achieve extremely
high memory bandwidth via deep pipelining, but read ac-
cesses can take more than 400 cycles. Our explicit memory
model allows the user to exploit deep memory pipelines via a
combination of pipelined execution and parallel tasks.

Each array allocated to DRAM memory is associated
with a memory port module that implements functions for
reading and writing the array. These functions provide a
pipelined split-phase protocol that takes advantage of the
pipelined memory interface. Prototypes for these basic func-
tions used to access arrays are shown in Figure 3. The read
function takes an index used to read the array along with a
function reference that is called with the data once it is avail-
able. The write function takes an index, the data to be
written to the specified index, and optionally a write-
complete callback. Since writes do not return a value, no
callback function is necessary, but for synchronization pur-
poses the caller may wish to know when the write has
finished. The atomicUpdate function performs an atomic
read-modify-write operation on the array using a function
provided as one of the arguments. This allows the caller to
specify an arbitrary update function to be performed on the
memory location. These array functions can be augmented to
support more complex memory models. For example, write
flush is useful when synchronizing arrays between phases of
a computation. The system infrastructure for a platform must
provide the hardware implementations of the array function
call interface provided by our model.

Function pointers like those used by the memory inter-
face are a general mechanism that allows the calling function
to specify the destination of the next call. Most applications
use simple memory access patterns, so a static call graph can
be constructed by the compiler and implemented using point-
to-point communication. However, our mechanism allows
the destination to be dynamically determined for more com-
plex applications. These calls are implemented using a
dynamic routing network.

Before describing the remaining features of the Elan pro-
gramming model, we will describe the algorithm for the
short-read alignment problem, and show how it can be im-
plemented using Elan in a form that can be executed
efficiently in hardware.

III. SHORT-READ ALIGNMENT ALGORITHM

 DNA sequencing is used in a large and growing number
of ways. One of the most visible is “human genome
(re)sequencing”, which is the process of determining the

genome sequences of one individual, as distinct from the
“human reference sequence”, which is actually a mosaic
drawn from several individuals. In this application, each read
from the target genome is mapped (or “aligned”) to its best
match in the reference genome; the consensus of the aligned
reads together define the target genome. This works since
human genomes are extremely similar, differing in perhaps 1
in 1000 base-pairs. While many reads will match exactly to
the reference genome, many do not, either because there was
a read error or because there is a real difference between the
reference and target genome at that location.

module Array<type> {
 void read(void &callback(type),
 unsigned int:32 index) {
 callback(memory[index]);
 }
 void write(unsigned int:32 index,
 type value) {
 memory[index] = value;
 }
 void atomicUpdate(type &update(), void
 &callback(type), unsigned
 int:32 index) {
 type temp = memory[index];
 memory[index] = update(temp);
 callback(temp);
 }
}

Figure 3. Example array using our memory model.

Next generation sequencing technologies have appeared

in recent years that are completely changing the way genome
sequencing is done. New platforms like the Solexa/Illumina
and SOLiD can sequence billions of base pairs in the matter
of days. However, the computational cost of accurately re-
assembling the data produced by these new sequencing ma-
chines into a complete genome is high and threatens to
overwhelm the cost of generating the data [6]. Providing a
low-cost, low-power, high-performance solution to the re-
sequencing problem has the potential to make the sequencing
of individual genomes routine [5].

To simplify somewhat, a DNA sample of the target ge-
nome is prepared by slicing the genome at random into many
small subsequences, typically 35 to a few hundred base-pairs
(ACGT) in length. Next generation sequencing machines
then “read” the base-pair string for each of these subse-
quences, called “reads”. These new sequencing machines can
perform these reads in parallel to generate hundreds of mil-
lions of reads in a matter of days. This is done on many
copies of the DNA sequence, resulting in many overlapping
reads, which guarantees coverage of the entire reference se-
quence and allows a consensus to be achieved in the
presence of errors in the reading process.

Our alignment algorithm finds the best positioning for
each read, and is based on the BFAST algorithm [2]. The
alignment is found in two steps. In the first step, a set of
“candidate alignment locations” (CALs) is collected for the
read using an index of the reference genome. This index is a
hash table mapping all length N subsequences of the genome

to the set of locations where that sequence occurs [3]. To
find the CALs for a read, we look up in the index each sub-
sequence of length N in the read, called a seed. This returns a
list of all the locations where that seed is found in the refer-
ence. The set of all CALs for the short read is formed by
finding the locations of all the seeds in the read. If at least
one of these seeds is free of mismatches and indels (inser-
tions or deletions), then one of these CALs will give the
actual location of the read in the reference genome.

In the second step, the read is compared to the genome at
each of the candidate locations using a full Smith-Waterman
[9] scoring algorithm, and the location that has the best
match to the read is reported. The Smith-Waterman algo-
rithm is a dynamic programming algorithm for performing
approximate string matching that can be mapped very effi-
ciently to a systolic array implementation in hardware. It is
important both when finding the set of CALs, and when
evaluating the match for each CAL, that the algorithm han-
dle multiple mismatches caused by single nucleotide
polymorphisms (SNPs; i.e., single differences between the
target and reference genomes) and read errors, as well as
insertions and deletions (indels). Although these occur infre-
quently, it is these cases that are the most biologically
interesting and thus most important to identify. Using the full
Smith-Waterman algorithm is the best way to find align-
ments in the presence of all these features.

A typical short read alignment problem for the human
genome involves aligning 600 million short reads, which is
about 20–40 GB of data, to a genome of 3 billion base pairs.
The size of the index table is about 20GB, and the size of the
reference genome is 1–4 GB depending on the data represen-
tation. Performing an alignment in software using a multi-
threaded program on a high-performance workstation takes
about 9-12 hours. This section describes how the Elan pro-
gramming model is used to describe a parallel hardware
implementation of a short read alignment algorithm.

Figure 4 gives a high-level program for this alignment
algorithm. The CALs for each seed are retrieved using an
index of the reference comprised of two tables, the PtrTa-
ble and the CalTable. The PtrTable is a hash table
that maps each seed to a pointer into the CalList that
gives the list of CALs for that seed. A tag is used to identify
the CALs associated with the seed since the CALs for multi-
ple seeds are stored in one entry of the hash table. The size of
the PtrTable is adjusted to keep it small and efficient
while avoiding too many unnecessary lookups in the Cal-
List. Many of the details of this program [7][4][8] have
been elided for clarity. While these details are important,
they do not affect the explanation of the Elan model.

Using hardware to accelerate this program requires ad-
dressing several different issues. The first is that the large-
scale multi-threaded parallelism used by software programs
is not appropriate for hardware. The outer loop of this pro-
gram is a forall loop—each iteration is independent and can
be executed by a separate thread, which may be interleaved
on a single core and/or allocated across many cores and pro-
cessors. A big difference between software and hardware
execution is that threads are virtual in software, while they

are physical in hardware. That is, computation is mapped
directly into components that execute that computation. High
performance is achieved on a single thread both by executing
operations in parallel (instruction-level parallelism), and also
via fine-grained pipelining. Coarse-grained task-level paral-
lelism is expensive in hardware since each task is mapped to
physical hardware. In our model we try to achieve as much
performance as possible via instruction-level parallelism and
pipelining before resorting to multiple-thread, task-level par-
allelism.

for (i=0; i < NUMREADS; i++) {
 shortRead = shortReads[i];
 filter.init();
 maxScore.init();
 for (j=0; j < NUMSEEDS; j++) {
 seed = shortRead.seed(j);
 (index, seedKey) = hash(seed);
 calList = PtrTable[index];
 for (k=0; k < calList.size; k++) {
 (cal, key) = CalList[k];
 if (key == seedKey &&
 !filter.contains(cal)) {
 filter.add(cal);
 ref = reference[cal];
 (pos, score) =
 SmithWaterman(shortRead, ref);
 maxScore.enter(pos, score);
 }
 }
 }
 host.report(maxScore.max());
}

Figure 4. Pseudocode for short read alignment.

The next issue is memory latency and bandwidth. Three

arrays in this program, PtrTable, CalList and refer-
ence, are very large, multi-gigabyte arrays that must be
stored in DRAM. These arrays are accessed mostly in ran-
dom order, which means that caching is not effective for
reducing latency. Thus, the time to execute each iteration of
this program is dominated by the memory latency, which
may be 10s to 100s of clock cycles. If memory accesses can
be pipelined along with the rest of our program, then we can
hide this latency.

The final issue is the call to the SmithWaterman func-
tion, which invokes a Smith-Waterman[9] string comparison
between the short read and a substring of the reference. This
is a complex function that is very slow in software. Howev-
er, there is a well-known dynamic programming algorithm
that maps well to hardware and achieves very good perfor-
mance.

The goal of the Elan programming model is to allow a
programmer, or perhaps a smart compiler, to transform a
program like this into an efficient hardware implementation
running on an FPGA accelerator.

IV. PROGRAM TRANSFORMATION

In this section, we will transform the short read program
of Figure 4 into a program written in the Elan programming
model that can be directly compiled into hardware. This

transformed program will retain the structure of the original
program, but will use deep pipelining to achieve high
memory bandwidth and performance.

Figure 5 shows the first module in the pipeline, which
implements the outermost two loops of the program of Fig-
ure 4. This module has two functions. The first function,
getReads, is called by a host process to begin execution of
the program. It performs the first step of each iteration,
which reads each short read from the shortRead array.
Since the read function is asynchronous, getReads does
not wait, but can start all the array accesses for the short
reads at a rate of one per clock cycle.

The call to read provides a pointer to the newRead
function as an argument. As data is read from the DRAM, it
is sent to the Main module via a call on the newRead func-
tion. This function executes the second loop of the program,
which divides each short read into a set of seeds, and initiates
a read of the pointer hash table for each seed. Note that these
two functions execute concurrently, although the newRead
function will be working on a much earlier iteration than the
getReads function because of the pipelined memory ac-
cesses. Once the memory read pipeline has filled, however,
memory accesses will occur at the maximum rate supported
by the memory.

module Main {
 ...
 void getReads() {
 for (int:32 i=0; i<NUMREADS; i++) {
 shortRead.read(&newRead(), i);
 }
 }
 void newRead(ShortRead shortRead) {
 smithWaterman.newRead(shortRead);
 for (int:32 j=0; j<NUMSEEDS; j++) {
 Seed seed = shortRead.seed(j);
 (int:32 index, int:32 key) =
 hash(seed);
 ptrTable.read(
 &filter.ptrData(key), index);
 }
 }
}

Figure 5. The Main module. It executes the start of each
iteration, beginning the flow of data through the pipeline.

Again, the ptrTable.read function call provides a

pointer to the function filter.ptrData that the memory
calls to return the data. This function is part of the Filter
module, which is shown in Figure 6. This ptrData func-
tion requires two arguments, while the memory read function
expects a pointer to function of only one argument. The call
to read supplies the first argument and partial evaluation
uses this to turn the ptrData function into a function of
one parameter as expected by the read function. This al-
lows the newRead function to forward the key value to the
Filter module along with the memory access.

module Filter {
 ...
 void ptrData(int:32 key,
 CalList calList) {
 for (int:32 k=0; k < calList.size;
 k++) {
 calTable.read(&calData(key),
 calList.ptr + k);
 }
 }
 void calData(int:32 seedKey,
 CalEntry cal) {
 if (seedKey == cal.key) &&
 (!filter.contains(cal.pos)) {
 filter.add(cal.pos);
 refArray.read(
 &smithWaterman.refData(),
 cal.pos);
 }
 }
}

Figure 6. The Filter module reads the CALs, filtering
out repeats. It then calls the Smith-Waterman computation.

The Filter module uses the information returned by

the hash table to initiate the reads of the calTable. The
key value is again forwarded with the data read from the
calTable to the calData function, which now uses it to
determine which CALs belong with the current seed.

module SmithWaterman {
 Read shortRead;
 void newRead(Read read) {
 this.shortRead = read;
 }
 void refData(Reference ref) {
 (pos, score) = SW(shortRead, ref);
 maxScore.enter(pos, score);
 }
}

Figure 7. The Smith-Waterman unit itself.

The SmithWaterman module of Figure 7 performs the

Smith-Waterman comparison between the short read and the
reference subsequence identified by the current candidate
location. This module has two methods. The first, newRead,
is called by the Main module and provides the current short
read to be compared. The second, refData, is called by the
RefArray module with the result of reading the reference
array at the current CAL position. The SW function refers to
a hardware function that performs the pipelined Smith-
Waterman calculation and returns the best score and associ-
ated alignment in the reference subsequence. This function
takes on the order of 100-200 FPGA clock cycles, and thus
may represent a bottleneck depending on how often the
Filter module finds a new, unique CAL to process. The
SmithWaterman module calls the MaxScore module,
shown in Figure 8, with the result of the comparison to enter
this alignment for the current read.

The MaxScore module just keeps track of the highest
score found for the current short read. In some applications,

it could simply filter all scores below some threshold, or
keep a list of the highest N scores for the short read.

module MaxScore {
 int:32 maxScore = 0;
 int:32 maxPos;
 void enter(int:32 pos, int:32 score) {
 if (score > maxScore) {
 maxScore = score;
 maxPos = pos;
 }
 }
}

Figure 8. The MaxScore module, which aggregates the
individual scores for all CALs of a give read and saves only
the highest scoring location.

A. Pipeline Synchronization

Our transformed program executes the original program
in a pipelined fashion. Even though this pipeline is com-
posed of concurrently executing function calls, it is useful to
think of it as a single thread that is executing via hardware
pipelining as opposed to software pipelining.

The transformed program correctly executes a single iter-
ation of the original program in a pipelined fashion;
however, it does not handle multiple iterations correctly.
That is, there is no mechanism for determining where one
iteration ends and the next iteration begins. For example, the
MaxScore module must re-initialize the best score for each
short read. We specify this synchronization by putting a bar-
rier at the end of the outer loop, which separates one iteration
from the next in the computation.

There two types of barriers. The first is a true barrier,
which must be used if one iteration depends on data pro-
duced from an earlier iteration. These barriers require that
the pipeline be flushed between iterations. One might think
that a barrier might greatly limit performance, but if the loop
body contains a large computation and the pipeline flush
happens only infrequently, then the performance loss can be
minimal. There is also the opportunity for “relaxed barriers”,
where the next iteration can begin when the data required by
loop-carried dependencies becomes available.

We call the second type of barrier a “fence”, which can
be used by for-all loops such the loop in this program. A
fence simply requires that two iterations be separated in the
pipeline. This fence notifies each module when one iteration
has ended so it can begin the next.

There are two ways to implement barriers and fences.
The first method attaches a system flag to each function call,
and the end of an iteration is denoted by setting this flag. A
function can test this flag to determine whether a barrier has
been reached and can forward the barrier via its own function
calls.

The second version uses dataflow accounting, which
keeps track of the amount of work entering the pipeline and
the amount of work completed. This is useful when the
amount of work can be statically determined. For example,
in our program the number of seeds in each read is constant,
so the barrier/fence can be implemented by a simple count.

Dataflow accounting is more complicated in the general
case, but can be useful in systems where calls may be deliv-
ered out of order.

In our program, a combination of barrier flags and data-
flow accounting is used to implement the fence at the end of
the outer loop. (These have not been included in the example
code in the interest space and clarity.) No fence call is re-
quired by the Main.getReads method since exactly one
call is made per iteration on the Main.newRead method.
Similarly, the Main.newRead method does not need to
make a fence call since Filter.ptrData knows that
exactly NUMSEEDS calls (the number of seeds per read) will
be made per iteration.

Filter.ptrData does need to make a fence call on
calTable.read after it completes processing the last call
for the iteration, since the number of CALs per seed is not
known at compile time. This fence is forwarded to Fil-
ter.calData, which then forwards it through
RefArray.read to the SmithWaterman.refData
function. Since there is one short read per iteration, the
SmithWaterman module waits for the fence before exe-
cuting the next newRead function call. This synchronization
between the newRead and refData functions is accom-
plished using a shared full/empty flag.

When the fence finally makes it to the MaxScore mod-
ule, it causes the computed maximum score and alignment
for the current short read to be reported via a function call to
the Host processor, and the values to be re-initialized.

V. PARALLELIZATION VIA MODULE
REPLICATION AND DISTRIBUTION

There is already substantial parallelism in the implemen-
tation as described since the operation of the modules and the
memory accesses are pipelined to take full advantage of
available memory bandwidth. Increasing the performance of
this pipeline requires understanding the bottlenecks and in-
troducing concurrency to remove them. In general,
increasing the performance of an application revolves around
removing three bottlenecks: computational bandwidth,
memory bandwidth, and communication bandwidth. In the
short read alignment application, there are two primary bot-
tlenecks: the memory bandwidth for reading the CALs from
the calTable array, and the computational demands of the
Smith-Waterman comparison. Depending on the seed length,
tens to hundreds of CALs may be read from memory for a
short read and filtered down to only a few unique CALs.
Each unique CAL then results in one Smith-Waterman unit
comparison, which then takes roughly 200 clock cycles to
complete. Based on the ratio of unique CALs produced to the
total number read from the calTable, which depends on
the seed length and indexing parameters, one or the other of
these bottlenecks will be encountered.

Computational bandwidth is increased by replicating
modules so that independent computations can proceed in
parallel. Memory bandwidth is increased by partitioning ar-
rays across multiple memories or memory ports. In both
cases, this partitioning and replication may occur within a

single node, or across multiple nodes, depending on the
memory and computational resources available in a platform.
Communication bandwidth is increased by taking advantage
of locality, that is, by making sure modules are located near
the memories and other modules with which they communi-
cate.

A. Memory Partitioning

Arrays are partitioned across multiple memory modules
by specifying a partition map function that maps array indi-
ces to memory partitions. Partitions are then distributed
across memory modules via a “locale” map function. Once
partitioned, array access method calls are automatically di-
rected to the appropriate partition using the partition and
locale map functions.

Assuming that our platform has multiple memories or
memory ports, we can address the memory bandwidth bot-
tleneck posed by the calTable by partitioning it across
multiple memory modules or ports. For example, the Convey
platform provides 16 memory ports in each FPGA, and we
might allocate 4 or 8 of these ports to the calTable. This
requires only one change to the program: the calTable
array declaration is declared a “partitioned” array with a par-
tition map function that describes how the array is
partitioned. Calls to the array access functions are automati-
cally sent to the appropriate memory module or port using
the map function and the array index.

For the short read application, the mapping function for
the calTable and ptrTable would be blocked or inter-
leaved based on the array index, since the hash function
already distributes the entries relatively uniformly across
regions of the tables. For arrays with more non-uniform ac-
cesses (such as raw DNA sequences which can have unequal
base distributions), hashing the address or the use of caching
can reduce hotspots in the memory access patterns.

We adopt a partitioned memory model that allows multi-
ple memories and memory ports to be used to increase
memory bandwidth without the overhead of coherence pro-
tocols. This means that each memory port only ensures that
memory accesses to that port are ordered correctly.

B. Module Replication

Computational bandwidth is increased by replicating
modules that pose a computational bottleneck. For example,
in our program, we would replicate the SmithWaterman
module to allow multiple SmithWaterman comparisons to
proceed in parallel. This is done by changing the declaration
of the SmithWaterman module to specify that it is a “dis-
tributed” module, specifying how many copies of the module
should be constructed, and defining a distribution map func-
tion that describes how a given parameter, or set of
parameters, shared by all function calls, are mapped to a giv-
en module. This creates an array of modules and specifies
how function calls are sent to the appropriate module of this
array.

The programmer must decide how best to partition, repli-
cate and distribute the memories and modules. In this
program, we could use a distribution map function on the

shortRead ID number to allocate <shortRead, ref>
comparisons to SmithWaterman units. This would map
all comparisons for one read to the same SmithWaterman
unit. This allows better pipelining (since the next ref can
begin processing before the previous one is done since the
shortRead is the same), but can cause load-balancing and
reordering costs. Alternatively, we could simply allocate
each comparison to the next free SmithWaterman unit by
using a map function over both the shortRead ID number
and the reference CAL. This type of allocation of replicated
modules is described in the next section.

The programmer must design the appropriate array parti-
tioning and accompanying replication of computational
modules to achieve the best performance by maximizing
memory bandwidth and minimizing inter-node communica-
tion. However, distributions provide a high-level way to
describe these partitioning and replication map functions.
The programmer describes a parallel implementation simply
by defining these map functions and the compiler automati-
cally partitions the memory, duplicates the modules,
implements method calls using the most efficient means, and
routes method calls to the appropriate modules.

Distributions allow the partitioning and parallelization of
an implementation across a large number of nodes to be de-
scribed concisely and implemented automatically. Changing
the parameters and the shape of a parallel implementation is
thus easy for the programmer to specify. This greatly reduc-
es the effort to tune an implementation and port applications
to new platforms—the algorithm is cleanly separated from
the platform-specific implementation.

C. Dynamic Modules and Dynamic Module Allocation

It is often convenient to allocate modules to tasks auto-
matically. For example, it is convenient to treat a set of
SmithWaterman modules as a fixed-size pool of modules
that can be allocated automatically as they are needed. Our
model supports this automatic allocation and de-allocation
by allowing modules to be declared as dynamic. Dynamic
modules are like other modules, but are kept in a pool by the
runtime system and allocated dynamically as needed when
method calls are made. Each method call to a dynamic mod-
ule specifies a module ID. When a method is called with a
new module ID, a module with that ID is automatically allo-
cated from the pool. Subsequent method calls to a dynamic
module with the same ID are handled by the same module,
and when the module has completed its task, it de-allocates
itself and is placed back in the pool. This mechanism allows
the programmer to think of there being a large number of
modules, one for each task, and lets the runtime system au-
tomatically multiplex tasks across the set of available
hardware modules.

In the short read application, we could define the
SmithWaterman module as a dynamic module with the
(read ID, CAL) pair as the dynamic module ID. This
would cause each Smith-Waterman comparison to be allo-
cated to a new module from the pool. When the comparison
is completed and the result has been reported via the
newScore function call, the module would deallocate itself

and be returned to the pool. In this way, the number and lo-
cation of actual SmithWaterman modules can be changed
without having to otherwise change the program.

VI. COMPILING PROGRAMS TO HARDWARE

A program written using the Elan programming model is
converted to hardware in three steps. In the first step, all
hardware modules are constructed. Each module has a set of
input ports that correspond to the function call interfaces
defined by the module. Each of these function call ports is
connected to a FIFO that buffers incoming function calls. An
output port is added to the module for each function call
made by the module’s functions. Each function is imple-
mented using a finite state machine that performs the
computation of that function. This FSM waits in an idle state
until a function call appears in the call FIFO, and then exe-
cutes the function using the parameters in the call FIFO. Any
function calls made by the function are accomplished by
putting the arguments on the output port and initiating a
handshake that sends the call as a packet. When done, the
FSM returns to the idle state. Where data dependencies al-
low, the FSM can be pipelined so that several function calls
can be executed concurrently.

The second step constructs the call graph that connects
the modules. In most cases, this call graph can be determined
statically. That is, it can generally be determined at compile
time exactly which module a function call is being invoked
on. In this case, a point-to-point link is made in the call
graph. For distributed modules and partitioned memories, a
function call may be invoked on any one of a set of modules.
In this case, each call has a fanout to a set of modules.

In the final step, the modules and the call graph are
mapped to the physical resources of the hardware platform.
The programmer specifies how modules should be mapped
to nodes in the system, and the compiler maps the call graph
to system communication resources. Each function call is a
packet comprising the function arguments, sent from the
source module to the destination module. This packet deliv-
ery can be done in the simplest case using dedicated wires
and a handshake with the destination call FIFO, or in the
most general case using a packet-switched network spanning
multiple nodes. Other options include using shared, time-
multiplexed buses for low-bandwidth links, and independent
switched networks for independent parts of the call graph.
Optimizing the system communication using an analysis of
the data bandwidth on each link to map the call graph effi-
ciently to the communication resources of the platform is a
major research challenge.

We do not yet have a full compiler for Elan. We are ex-
perimenting with Elan by writing programs in a Java
“sandbox” that implements the programming model using
Java threads and implicit call FIFOs. Programs run in this
sandbox using concurrent execution that allows us to test and
debug programs before mapping them into hardware.

After a program has been debugged, it is run through a
simple parser that generates the Verilog for the system archi-
tecture. This uses annotations added to the Java program
that specifies the bit-width of values so that the appropriate
Verilog declarations can be made. This system architecture

includes all module interfaces, including call FIFOs, and the
complete implementation of the call graph using switching
networks for those cases where calls fan out to multiple
modules, and where calls fan in to a single module.

The final step is to write the finite state machines for
each of the module functions. This is currently done manual-
ly, although we are starting to experiment with using
AutoESL [10] from Xilinx to do this automatically.

Although we do not yet have a full compiler, we have
been able to experiment with a number of applications in-
cluding vector add, breadth-first search, sparse matrix-vector
multiply and short read alignment. We have targeted both the
Pico Computing M503 FPGA board and the Convey HC-1,
which have very different platform architectures. These ex-
periments have allowed us to analyze the efficacy of Elan for
hardware systems, understand the compiler optimization
issues and opportunities, and estimate the cost and perfor-
mance of the resulting hardware systems.

A. Mapping the Short Read Application to Hardware

We have designed the hardware infrastructure required
by our model for both the Pico Computing M501 platform
and the Convey HC-1 FPGA-based supercomputer. This
infrastructure supports the pipelined memory interface of the
individual platforms, a procedure call-based host interface,
and the routing network needed for partitioned arrays and
distributed modules.

The Convey HC-1 computer is an FPGA-based super-
computer comprising an Intel Xeon quad-core processor and
4 Xilinx Virtex5 LX330 FPGAs [1]. The processor and
FPGAs are connected by an interface that allows them to
share up to 64 GB of memory. Each FPGA has 16 ports to
this memory; each port supports 64-bit pipelined memory
accesses to random addresses at the rate of 150MHz.

We mapped the program described above to the Convey
platform via the process described above. We first tuned the
program for one FPGA, and then replicated it across all four
FPGAs, giving each FPGA ¼ of the short reads to process.
Because all 4 FPGAs on the Convey platform share the same
memory, the index and reference arrays can be shared by the
four replicas. We can fit 4 SmithWaterman modules in
each FPGA for short read lengths of 100 base-pairs. In our
current implementation, we do not use dynamic modules, but
rather allocate SmithWaterman modules to each short in
round-robin order as described in Section V.B.

We allocate 1 memory port for reading the short read ar-
ray, a second port for reading the PtrTable, 8 ports for
reading the CalTable and 1 port for writing the score re-
sults back to memory. The pipelined memory performance of
the Convey is such that the bottleneck becomes the Smith-
Waterman computation. The results so far show that the per-
formance and cost of this implementation are competitive
with a manually written Verilog implementation of the short-
read algorithm. In particular, the system infrastructure used
by the compiler does not cause any performance degradation
and allows the program to achieve the full memory interface
bandwidth. With 4 FPGAs and 4 Smith-Waterman units per
FPGA, and 100 base-pair short reads, we can perform about
15 million full Smith-Waterman comparisons per second.

For a seed length of 22 base-pairs, the expected computation
rate is over 2 million short reads per second. By comparison,
BFAST running on a 6-core Intel Xeon processor processes
about 10,000 short reads per second1.

Retargeting this program to the Pico M503 platform Er-
ror! Reference source not found. is straightforward. The
Pico M503 platform is a single board with one Xilinx Vir-
tex6 LX240T FPGA connected to 8 GB of DRAM and 24
MB of SRAM, which is not used in this application. The
M503 provides two multi-ported interfaces to two 4 GB
DRAM modules. Since these ports compete with each other,
unlike on the Convey platform, there is no advantage to as-
signing more than one port to each array. In addition, the
short read array is read from disk by the host, and thus the
Main module is split into two modules: the getReads
function in one module running on the host processor, and
the newRead function in a second module running on the
FPGA. The function call to newRead is automatically car-
ried out using the streaming interface provided by the Pico
platform.

Compiling the program to a platform comprising multiple
Pico boards, each with its own FPGA and memory module,
requires the system infrastructure for delivering the call
packets between FPGAs. We have not yet implemented this
infrastructure, which would use the PCI-express interconnect
between the boards, a set of dedicated inter-FPGA connec-
tions or a combination of the two. A program to use multiple
FPGAs without shared memory would need to either repli-
cate the index across the boards, which would waste
memory, or partition the index across the boards, which
would require each short read to be processed by all boards
and for the results to be combined.

VII. RELATED WORK

There are many short read mapping software tools that
tackle the problem of processing the enormous amount of
data produced by the next-generation sequencing machines.
These alignment solutions tend to fall into two main algo-
rithmic categories.

The first category of solution is based upon a block sort-
ing data compression algorithm called the Burrows-Wheeler
Transform (BWT) [14]. This solution uses the FM-index
[15] to efficiently store information that allows all locations
of a given substring to be found in time proportional to the
length of the substring. Unfortunately, the running time of
this class of algorithm is exponential with respect to the
number of differences between the short read and the refer-
ence; therefore BWT-based algorithms cannot afford to be as
sensitive as the other class of algorithm, making them inap-
propriate for some genomic applications. Bowtie [12] and

1 We are currently finalizing the hardware implementation for a single
FPGA. The final version of the paper will contain the performance re-
sults of running the full 4-FPGA system on full representative data sets
for the human genome. We will generate a detailed comparison of the
performance of our system to a manually designed short-read align-
ment implementation, as well as the software version running on a
multi-core server.

BWA [13] are examples of programs based on BWT index-
ing.

The alignment algorithm we have described falls into the
second category of algorithm, which uses an index of short
subsequences called seeds to find candidate locations in the
reference. The Smith-Waterman algorithm is used to com-
pare the short read to the candidate locations in the reference,
which allows many mismatches and insertions/deletions to
be tolerated. BFAST [2] is an example program based upon
this algorithmic approach.

A. FPGA-Based Short Read Alignment

Our group has published an FPGA-based implementation
of the short read alignment application that is very similar to
that described in this paper [8]. However, that implementa-
tion was designed entirely by hand for the Pico M503 FPGA
platform and required over a man-year of effort. The goal of
the research described in this paper is to reduce the time and
effort required to implement algorithms using FPGA accel-
erators by at least an order of magnitude, while remaining
competitive in both cost and performance.

Two other attempts to accelerate short read alignment on
FPGAs used a brute-force approach to compare short se-
quences in parallel to an entire reference genome. They
stream the reference genome through a system that matches
of the short reads to the reference [16][17]. Reference [16]
demonstrates a greater sensitivity to genetic variations in the
short reads than Bowtie and MAQ, but the mapping speed
was approximately the same as that of Bowtie. This system
also demonstrated mapping short reads to only chromosome
1 of the human genome. Reference [17] demonstrates be-
tween 1.6x and 4x speedup versus RMAP [18] and ELAND
[19] for reads with between 0 and 3 differences, for the full
human genome.

In both implementations, the number of short reads that
can be aligned in a single pass of the reference genome is
limited by the number of block RAMs on the FPGA. Scaling
to a larger number of short reads (the previously cited works
mapped only 100,000 50-base and 1,000,000 36-base reads
respectively) would require multiple passes of the reference
genome, with consequent increase in runtime.

There have been many efforts to compile high-level lan-
guages like C to hardware and these are now becoming
widely available (see the excellent survey by Cardoso, Diniz
and Weinhardt [20]). By contrast, our work is focused on the
system level; in fact we assume the existence of a “module
compilers” like AutoESL to map simple C programs to
hardware. Our model is similar in spirit to several other
models that address the system level, particularly TDM-MPI
[21], IBM’s Lime [22], and HThreads [23], but differs in the
use of higher-level abstractions for describing parallelism.

In most cases, an application can be described using a
relatively small number of concurrent objects. Generating a
parallel implementation involves partitioning the data and
computation and distributing these across a large number
concurrent objects. We borrow the idea of “distributions”
from parallel programming languages like Chapel [24] and
X10 [25] to describe how objects in our model are duplicated
and distributed to achieve large parallel implementations.

Distributions allow the partitioning and parallelization of an
implementation across a large number of nodes to be de-
scribed concisely and implemented automatically.

VIII. CONCLUSIONS

In this paper, we have presented the Elan programming
model and compiler used to target systems with multiple
FPGAs and CPUs. By harnessing concepts from parallel
computing, we provide an efficient method for specifying
high-performance applications. We also have mechanisms
for increasing the parallelism in computations and have effi-
cient memory interfaces to support these systems.

The key to the Elan model is the ability of the program-
mer to specify parallelization decisions conveniently via the
distribution and locale map functions. The compiler uses
these to partition and allocate arrays to memory, replicate
modules, and generate the necessary communication chan-
nels between these modules. Tuning the structure of the
computation to the application and the platform is relatively
straightforward and transparent compared to that required
using traditional hardware design tools. This also makes it
easier to port applications from one platform to another.

System-level design is also simplified by our model,
since modules can be implemented in software or hardware.
This means an application can be designed as a single pro-
gram and split between the processor nodes and accelerator
nodes depending on the platform architecture.

We have also demonstrated how we have used this envi-
ronment to develop an implementation of the short-read
alignment problem, a key step in modern genomics applica-
tions. This paper demonstrates a viable direction for the
programming of high-performance accelerators in bioinfor-
matics and other streaming application domains.

ACKNOWLEDGMENTS

This work was supported in part by NSF grant #CCF-
1116248, as well as Pico Computing, Convey Computing,
Xilinx, and the Pacific Northwest National Lab.

REFERENCES
[1] http://www.conveycomputer.com/

[2] N. Homer, B. Merriman, S. F. Nelson, “BFAST: An Alignment Tool
for Large Scale Genome Resequencing”, PLoS ONE, Vol. 4, No. 11,
2009.

[3] D. S. Horner, G. Pavesi, T. Castrignan, P. D. D. Meo, S. Liuni, M.
Sammeth, E. Picardi, and G. Pesole, “Bioinformatics approaches for
genomics and post genomics applications of next generation
sequencing”, Briefings on Bioinformatics, vol. 11, no. 2, 2010.

[4] Maria Kim, Accelerating Next Generation Genome Reassembly in
FPGAs: Alignment Using Dynamic Programming Algorithms, M.S.
Thesis, University of Washington, Dept. of EE, 2011.

[5] E. R. Mardis,“The impact of next generation sequencing technology
on genetics”, Trends in Genetics, vol. 24, no. 3, pp. 133–141, 2008.

[6] J.D. McPherson,“Next generation gap”, Nature, vol. 6, no. 11s,
2009.

[7] Corey Olson, An FPGA Acceleration of Short Read Human Genome
Mapping, M.S. Thesis, University of Washington, Dept. of EE, 2011.

[8] Corey B. Olson, Maria Kim, Cooper Clauson, Boris Kogon, Carl
Ebeling, Scott Hauck, Walter L. Ruzzo, “Hardware Acceleration of
Short Read Mapping”, to appear in IEEE Symposium on Field-
Programmable Custom Computing Machines, 2012.

[9] M. S. Waterman and T. F. Smith, “Rapid dynamic programming
algorithms for RNA secondary structure”, Advances in Applied
Mathematics, vol. 7, no. 4, pp. 455 – 464, 1986.

[10] http://www.xilinx.com/products/design-tools/autoesl/

[11] http://www.picocomputing.com/

[12] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L.
Salzberg, "Ultrafast and memory-efficient alignment of short
DNA sequences to the human genome," Genome Biology, vol.
10, no. 3, p. R25, March 2009.

[13] Heng Li and Richard Durbin, "Fast and accurate short read
alingment with Burrows-Wheeler transform," Bioinformatics, vol.
25, no. 14, pp. 1754-1760, July 2009.

[14] M. Burrows and D. J. Wheeler, "A block-sorting lossless data
compression algorithm," Digital Equipment Corporation, Palo
Alto, CA, Technical report 124, 1994.

[15] Paolo Ferragina and Giovanni Manzini, "Opportunistic Data
Structures with Applications," in Proceedings of the 41st Annual
Symposium on Foundations of Computer Science, Washington,
DC, 2000, p. 390.

[16] O. Knodel, T. B. Preusser, and R. G. Spallek, "Next- generation
massively parallel short-read mapping on FPGAs," in 2011 IEEE
International Conference on Application- Specific Systems,
Architectures and Processors, 2011, pp. 195-201.

[17] Edward Fernandez, Walid Najjar, Elena Harris, and Stefano
Lonardi, "Exploration of Short Reads Genome Mapping in
Hardware," 2010 International Conference on Field
Programmable Logic and Applications, 2010, pp. 360-363.

[18] A. D. Smith, Z. Xuan, and M. Q. Zhang, "Using quality scores
and longer reads improves accuracy of Solexa Read Mapping,"
BMC Bioinformatics, vol. 9, no. 128, pp. 1471- 2105, February
2008.

[19] O. Cret, Z. Mathe, P. Ciobanu, S. Marginean, and A. Darabant,
"A hardware algorithm for the exact subsequence matching
problem in DNA strings," Romanian Journal of Information
Scient and Technology, vol. 12, no. 1, pp. 51-67, 2009.

[20] J. Cardoso, P. C. Diniz, and M. Weinhardt, “Compiling for
Reconfigurable Computing: A Survey,” ACM Computing Surveys,
vol. 42, no. 4, pp. 1–65, 2010.

[21] M. Saldana, A. Patel, C. Madill, D. Nunes, D. Wang, H. Styles, A.
Putnam, R. Wittig, and P. Chow, “MPI as an abstraction for software-
hardware interaction for HPRCs,” in Second Interna- tional
Workshop on High-Performance Reconfigurable Computing
Technology and Applications. HPRCTA 2008., Nov. 2008, pp. 1– 10.

[22] J.Auerbach,D.F.Bacon,P.Cheng,andR.Rabbah,“Lime:ajava-
compatible and synthesizable language for heterogeneous archi-
tectures,” in Proceedings of the ACM international conference on
Object oriented programming systems languages and applications,

[23] D. Andrews, R. Sass, E. Anderson, J. Agron, W. Peck, J. Stevens, F.
Baijot, and E. Komp, “Achieving Programming Model Abstrac- tions
for Reconfigurable Computing,” IEEE Transactions on Very Large
Scale Integration Systems, vol. 16, no. 1, pp. 34 –44, jan. 2008.

[24] B. Chamberlain, D. Callahan, and H. Zima, “Parallel Programma-
bility and the Chapel Language,” Int. J. High Perform. Comput.
Appl., vol. 21, no. 3, pp. 291–312, 2007.

[25] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K.
Ebcioglu, C. von Praun, and V. Sarkar, “X10: An Object- oriented
Approach to Non-uniform Cluster Computing,” in OOP- SLA ’05:
Proceedings of the 20th Annual ACM SIGPLAN Confer- ence on
Object-Oriented Programming, Systems, Languages, and
Applications. New York, NY, USA: ACM, 2005, pp. 519–538.

