RIFFA 2.2.2 Documentation

Dustin Richmond, Matt Jacobsen

Thursday 11*" August, 2016

Contents

1 Introduction: RIFFA
1.1 What is RIFFA

1.2 Licensing

2 Getting Started

2.1 Development Board Support in RIFFA 2.2.2
2.2 Understanding this User Guide
2.3 Decoding What’s Provided
2.4 Release Notes e
241 Version 2.2.2
2.4.2 Version 2.2.1o e e
2.4.3 Version 2.2.0 Lo e
244 Version 2.1.0
245 Version 2.0.2
2.4.6 Version 2.0.1 e
2.5 Erratao
251 Windows L
2.5.2 Linux e
2.5.3 Altera
254 Xilinx (Classic) o e
2.5.,5 Xilinx (Ultrascale) L

3 Installing the RIFFA driver

3.1 Linux . .

3.2 Windows

10
10
10
10
10
11

4 Compiling and using the Xilinx Example Designs

4.1 Classic - 7 Series Integrated Block for PCI Express - (VC707, ZC706 and older) . .
4.1.1 VC707 and ZC706 Example Designs
4.1.2 Generating the 7 Series Integrated Block for PCI Express
4.1.3 Creating Constraints files for the VC707 Development Board
4.1.4 Creating Constraints files for the ZC706 Development Board

4.2 Ultrascale - Gen3 Integrated Block for PCI Express - (VC709 and newer)
4.2.1 VCT709 Example Designs Lo
4.2.2 Generating the Gen3 Integrated Block for PCI Express
4.2.3 Creating Constraints files for the VC709 Development Board

Compiling and using the Altera Example Designs

5.1 Example Designs with Qsys and MegaWizard (Stratix V, Cyclone V and newer)
5.1.1 Qsys (Stratix Vand newer)
5.1.2 Generating IP using MegaWizard (Stratix V, Cyclone V and newer)
5.1.3 Creating Constraints files for MegaWizard and QSys Designs

5.2 IP Compiler for PCI Express (Stratix IV, and older)
5.2.1 Generating IP with IP Compiler for PCI Express (Stratix IV, and older) . .

5.2.2 Creating Constraints files for IP Compiler Designs

Developer Documentation

6.1 Architecture Description L
6.1.1 Scatter Gather DMA Layer
6.1.2 Data Abstraction DMA Layer

6.2 Software Description

6.3 FPGA RX Transfer / Host Send

6.4 TX Transfer

6.5 FPGA RX Transfer / Host Send

14
14
14
15
21
21
22
22
22
28

29
29
29
30
38
39
39
49

1 Introduction: RIFFA

1.1 What is RIFFA

RIFFA (Reusable Integration Framework for FPGA Accelerators) is a simple framework for com-
municating data from a host CPU to a FPGA via a PCI Express bus. The framework requires
a PCle enabled workstation and a FPGA on a board with a PCle connector. RIFFA supports
Windows and Linux, Altera and Xilinx, with bindings in C/C++, Python, MATLAB and Java.

On the software side there are two main functions: data send and data receive. These functions are
exposed via user libraries in C/C++4, Python, MATLAB, and Java. The driver supports multiple
FPGAs (up to 5) per system. The software bindings work on Linux and Windows operating
systems. Users can communicate with FPGA IP cores by writing only a few lines of code.

On the hardware side, users access an interface with independent transmit and receive signals.
The signals provide transaction handshaking and a first word fall through FIFO interface for
reading/writing data to the host. No knowledge of bus addresses, buffer sizes, or PCle packet
formats is required. Simply send data on a FIFO interface and receive data on a FIFO interface.
RIFFA does not rely on a PCle Bridge and therefore is not subject to the limitations of a bridge
implementation. Instead, RIFFA works directly with the PCle Endpoint and can run fast enough
to saturate the PCle link.

RIFFA communicates data using direct memory access (DMA) transfers and interrupt signaling.
This achieves high bandwidth over the PCle link. In our tests we are able to saturate (or near
saturate) the link in all our tests. The RIFFA distribution contains examples and guides for
setting up designs on several standard development boards.

RIFFA 2.1 Transfer Bandwidth
4,000 r— o e —r i o L —— e
3,000 v %7 77%ﬁ§{£/_,x,_7_,_7_7_7_7_ N
2,000 ;/i/ =1
14 - — = —— ——
1,500 e /,AI/ TEEe T -~
1,000k - vve e JO R ... —— Upstream —PCle Gen 2 x8 [128] | -

— — — Downstream —PCle Gen 2 x8[128]
— Upstream —PCle Gen 1 x8 [64]
BOO| - A|=—— Downstream —PCle Gen1x8[64] |
— Upstream —PCle Gen 1 x1 [32]
— — — Downstream —PCle Gen 1 x1 [32]

MB per second

25+

I Y I Iy I A [y I SO SO BN SO N N |
cggggegegggeggegegeeeozagp
-—'Nvmwr\lgOOKDNHNvmnDch%%E.gg
= m N 9 4 - M © N 1 oo
A & in

Transfer size

Figure 1.1: Graph of Bandwidth vs Transfer Size

RIFFA 2.2.2 is significantly more efficient than its predecesor RIFFA 1.0. RIFFA 2.2.2 is able
to saturate the PCle link for nearly all link configurations supported. Figure 1.1 shows the
performance of designs using the 32 bit, 64 bit, and 128 bit interfaces. The colored bands show
the bandwidth region between the theoretical maximum and the maximum achievable. PCle Gen
1 and 2 use 8 bit / 10 bit encoding which limits the maximum achievable bandwidth to 80% of
the theoretical. Our experiments show that RIFFA can achieve 80% of the theoretical bandwidth
in nearly all cases. The 128 bit interface achieves 76% of the theoretical maximum.

If you are using RIFFA on a new platform not listed above let us know and well help you out!

1.2 Licensing

Copyright (c¢) 2016, The Regents of the University of California All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

e Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

e Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

e Neither the name of The Regents of the University of California nor the names of its con-
tributors may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL REGENTS OF THE
UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN-
TAL, SPECIAL, EXEMPLARY, OR CONSEQUENTTAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (IN-
CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2 Getting Started

2.1 Development Board Support in RIFFA 2.2.2

RIFFA 2.2.2 supports:

e The VC707, ZC706 and similar boards with the Xilinx IP Core 7-Series Integrated Block
for PCI Express. Example designs for the VC707 and ZC706 boards are provided, and
contain this core. The current distribution supports all 64-bit interfaces for these devices,
with 128-bit support coming soon after the initial release. (Support for the 128-bit interface
is in RIFFA 2.1, but is temporarily mising due to changes)

e The VC709 board and similar boards with the Xilinx IP Gen3 Integrated Block for PCI
Express. Example designs for the VC709 are provided, and contain this core. The current
distribution supports all 64-bit and 128-bit AXI interfaces. 256-bit (PCIe Gen3 x8) support
is planned for a later date.

e The DE5-Net board and similar boards with the Stratix V, Cyclone V, and Arria V, Hard 1P
for PCI express (Avalon Streaming Interface). Example designs for the DE5-net board are
provided, and contain the Stratix V version of this core. The current distribution supports
all 64-bit and 128-bit Avalon Streaming interfaces.

e The DE4 and similar boards with the IP Compiler for PCI Express Core, supporting Stratix
IV, Cyclone IV and Arria IT devices. Example designs for the DE4 board are provided. The
current distribution supports all 64-bit and 128-bit Avalon Streaming interfaces.

2.2 Understanding this User Guide

In this user guide, we use the following conventions:

Object Example

Directories and Paths RIFFA 2.2.2/source/fpga/riffa
Xilinx Specific Content ve709

Altera Specific Content deb

Configuration Setting Number of Lanes

Terminal Command, Code Snippet | $ echo ‘‘Hello World’’
RIFFA Parameter C_NUM_CHNL

2.3 Decoding What’s Provided

Fig 2.1 shows the directory hierarchy of RIFFA. This instruction manual uses this directory tree
when specifying all directory paths.

The RIFFA 2.2.2/source/fpga/ contains a directory for each board we have tested for the current
distribution:deb, ded4, VC709, VC707, ZC706. Each board directory has several example project
directories (e.g. DE5Gen1x8If64 and VC709_Gen1x8If64). Each example project directory has 5
sub-directories:

e prj/ contains all of the project files (.gsf,.qpf, .xpr).

e ip/ contains all of the ip files (.qsys, .xci) generated for the project, when permitted by
licensing agreements.

e bit/ contains the example programming file for the corresponding FPGA example design.
Quartus and Vivado do not modify this programming (.sof, .bit).

e constr/ contains the user constraint files (.sdc, .xdc).

e hdl/ contains any example-project specific Verilog files, such as the project top level file.

RIFFA 2.2.2
— Documentation
L RIFFA User Guide.pdf (This Document)
— install
windows

t setup.exe
setup_debug.exe

linux

L README.txt

L source
— cc++
— java
— matlab
— python
— driver
linux
makefile
... (Other source files)

windows
L. (Other source files & directories)

— fpga

— riffa

L (RIFFA Source)

— deb

- DE5Gen1x8164
prj
bit
ip
constr
hdl

L ... (Other example projects)

— de4

t DE4Gen1x81f64

— vc709
t VC709_Genlx8If64

— zc706
t 7.C706_Gen1x8164

— ve707
t VC707_Gen1x8If64

Figure 2.1: Directory hierarchy of the RIFFA 2.2.2 distribution

2.4 Release Notes

2.4.1 Version 2.2.2

Fixed: Unsigned Windows Driver (Commit: 4e989fc)

Fixed: A bug in the clock-crossing interface where a low-frequency user clock (j40 MHz)
could cause incorrect channel behavior. (Commit: 778c42e)

Fixed: Support for 64-bit pointers in Python 3. Shout out to @jrobrien (Commit: af7c592)

Fixed: Includes in linux driver. linux/slab.h was not included in riffa_driver.c (Commit:
cd494el)

Fixed: Capability backwards/forwards compatibility issues to support Linux for Tegra.
(Commit: 1d228c1)

New: Support for new get_user_pages API in the linux kernel. Shout out to @marzoul
(Commit: TBD)

Removed: Non-Qsys DE5 Board Example Designs (QSys ; IP Generator) @marzoul (Com-
mit: TBD)

2.4.2 Version 2.2.1

New: Reset logic for the Engine layer to handle RIFFA induced resets

New: Stability /multi-thread-concurrency warnings in the Linux driver (Shoutout to @mar-
zoul)

Fixed: A bug in the Linux Driver that prevented compilation on older kernels
Fixed: Windows driver issue for back-to-back small transfers (See 2.2.0)

Fixed: WORD_ENABLE bug fix for the Classic Xilinx (VC707, ZC706, AC701, KC705)
128-bit interface

Fixed: TX Engine Buffer sizing (high-bandwidth transfers occasionally had corruption)

Fixed: RX Engine rx_st_valid bug fix for Altera IP Compiler for PCI express (Cyclone 1V,
Stratix IV)

2.4.3 Version 2.2.0

Added: Support for the new Gen3 Integrated Block for PCle Express, and the VC709
Development board.

Added: ZC706 Example Designs

Changed: Xilinx example project packaging. All Xilinx Virtex 7 projects are now click-to-
compile, and come with instantiated IP.

Re-wrote and refactored: Various parts of the TX and RX engines to maximize code reuse
between different vendors and PCle endpoint implementations

Fixed: A bug in the Linux Driver that prevented compilation on older kernels

Fixed: A bug in the Windows Driver that prevented repeated small transfers.

2.4.4 Version 2.1.0

Added reorder_queue and updated many rx/tx engine and channel modules that use it.

Added parameters for number of tags to use and max payload length for sizing RAM for
reorder_queue.

Fixed: Bug in the riffa_driver.c, too few circular buffer elements.

Fixed: Bug in the riffa_driver.c, bad order in which interrupt vector bits were processed.
Can cause deadlock in heavy use situations.

Fixed: Bug in the tx_port_writer.v, maxlen did not start with a value of 1. Can cause
deadlock behavior on second transfer.

Fixed: Bug in the rx_port_reader.v, added delay to allow FIFO flush to propagate.

Fixed: Bug in rx_port_xxx.v, changed to use FWFT FIFO instead of existing logic that
could cause CHNL_RX_DATA_VALID to drop for a cycle after CHNL_RX dropped even
when there is still data in the FIFO. Can cause premature transmission termination.

Changed rx_port_channel_gate.v to use FWFT FIFO.
Removed unused signal from rx_port_requester_mux.v.
Fixed: Typo/bug that would attempt to change state within tx_port_monitor_xxx.v.

Added flow control for receive credits to avoid over driving upstream transactions (applies
to Altera devices).

2.4.5 Version 2.0.2

Fixed: Bug in Windows and Linux drivers that could report data sent/received before such
data was confirmed.

Fixed: Updated common functions to avoid assigning input values.

Fixed: FIFO overflow error causing data corruption in tx_engine_upper and breaking the
Xilinx Endpoint.

Fixed: Missing default cases in rx_port_reader,
sg_list_requester, tx_engine_upper, and tx_port_writer.

Fixed: Bug in tx_engine_lower_128 corrupting s_axis_tx_tkeep, causing Xilinx PCle endpoint
core to shut down.

Fixed: Bug in tx_engine_upper_128 causing incomplete TX data timeouts.

Changed rx_engine to not block on nonposted TLPs. They’re added to a FIFO and serviced
in order.

Reset rx_port FIFOs before a receive transaction to avoid data corruption from replayed
TLPs.

2.4.6 Version 2.0.1

RIFFA 2.0.1 is a general release. This means we’ve tested it in a number of ways. Please
let us know if you encounter a bug.

Neither the HDL nor the drivers from RIFFA 2.0.1 are backwards compatible with the
components of any previous release of RIFFA.

e RIFFA 2.0.1 consumes more resources than 2.0 beta. This is because 2.0.1 was rewritten
to support scatter gather DMA, higher bandwidth, and appreciably more signal registering.
The additional registering was included to help meet timing constraints.

e The Windows driver is supported on Windows 7 32/64. Other Windows versions can be
supported. The driver simply needs to be built for that target.

e Debugging on Windows is difficult because there exists no system log file. Driver log mes-
sages are visible only to an attached kernel debugger. So to see any messages you’'ll need the
Windows Development Kit debugger (WinDbg) or a small utility called DbgView. DbgView
is a standalone kernel debug viewer that

e http://technet.microsoft.com/ens/sysinternals/bb896647.aspx Run DbgView with admin-
istrator privileges and be sure to enable the following capture options: Capture Kernel,
Capture Events, and Capture Verbose Kernel Output.

e The Linux driver is supported on kernel version 2.6.27+.

e The Java bindings make use of a native library (in order to connect Java JNI to the native
library). Libraries for Linux and Windows for both 32/64 bit platforms have been compiled
and included in the riffa.jar.

e Removed the CHNL_RX_ERR signal from the channel interface. Error handling now ends
the transaction gracefully. Errors can be easily detected by comparing the number of words
received to the CHNL_RX_LEN amount. An error will cause CHNL_RX will go low prema-
turely and not provide the advertised amount of data.

e Fixed: Bug in sg_list_requester which could cause an unbounded TLP request.

e Fixed: Bug in tx_port_buffer_128 which could stall the TX transaction.

2.5 Errata

While we have extensively tested the current distribution, we are human and cannot eliminate all
bugs in our distribution. As a general rule of thumb, if you find yourself delving into the RIFFA
code, you have gone too far. Contact us if you need additional assistance!

See the following notes for issues we are currently tracking:
2.5.1 Windows
2.5.2 Linux

No open issues

2.5.3 Altera

Issue 3: No support for the 256-bit, Gen3x8 Interface Coming soon...

2.5.4 Xilinx (Classic)

Issue 1: Missing example designs for ML605 There is no disadvantage to using RIFFA
2.1.0 until we return support in a future distribution.

Issue 2: Missing example design for Spartan 6 LXT Development board The 32-bit
interface support has been removed from RIFFA 2.2 and may be added back in the future. Please
use RIFFA 2.1 in the meantime

10

2.5.5 Xilinx (Ultrascale)

Issue 1: No support for the 256-bit, Gen3x8 Interface Coming soon...

11

3 Installing the RIFFA driver

3.1 Linux

To install the RIFFA driver in linux, you must build it against your installed version of the Linux
kernel. RIFFA 2.2.2 comes with a makefile that will install the necessar linux kernel headers and
the driver. This makefile will also build and install the C/C++ native library. To install RIFFA
2.2.2 in linux, follow these instructions:

1.
2.

Open a terminal in linux and navigate to the RIFFA 2.2.2/source/driver/linuz directory.
Ensure you have the kernel headers installed, run:
$ sudo make setup

This will attempt to install the kernel headers using your system’s package manager. You
can skip this step if you've already installed the kernel headers.

Compile the driver and C/C++ library:
$ make

or

$ make debug

Using make debug will compile in code to output debug messages to the system log at
runtime. These messages are useful when developing your design. However they pollute
your system log and incur some overhead. So you may want to install the non-debug
version after you’'ve completed development.

. Install the driver and library:

$ sudo make install

The system will be configured to load the driver at boot time. The C/C++ library will be
installed in the default library path. The header files will be placed in the default include
path. You will need to reboot after you’ve installed for the driver to be (re)loaded.

If the driver is installed and there is a RIFFA 2.2.2 configured FPGA when the computer
boots, the driver will detect it. Output in the system log will provide additional information.

The C/C++ code must include the riffa.h header. An example inclusion is shown in List-
ing 3.1

When compiling (using GCC/G++, etc.) you must link with the RIFFA libraries using the
-Iriffa flag. For example, when compiling test.c from Listing 3.1:

$ gcc -g -c¢ -1riffa -o test.o test.c

Bindings for other languages can be installed by following the README files in their re-
spective directories (See Figure 2.1

3.2 Windows

Currently only Windows 7 (32/64) is supported by RIFFA 2.2.2. In the RIFFA 2.2.2/install/win-
dows/ subdirectory use the provided setup.exe program to install the RIFFA driver and native
C/CH++ library. You can verify that RIFFA 2.2.2 installed correctly by checking the installation
directory in Program Files. After installation, you'll be able to install the bindings for other
languages.

The setup_dbg.exe installer installs a driver with additional debugging output. You can install
the setup_dbg.exe version and then later use setup.exe to install the non-debug output version.

Listing 3.1: Inclusion of the RIFFA header files in a user application

#include <stdio.h>
#include <stdlib.h>
#include <riffa.h>
#define BUF_SIZE (1%1024%1024)

unsigned int buf [BUF_SIZE];

int main(int argc, char* argv[]) {
fpga_t * fpga;
int fid = 0; // FPGA id
int channel = 0; // FPGA channel

fpga = fpga_open(£fid);

fpga_send(fpga, channel, (void #*)buf, BUF_SIZE, 0, 1, 0);
fpga_recv(fpga, channel, (void *)buf, BUF_SIZE, 0);
fpga_close (fpga);

return O;

13

4 Compiling and using the Xilinx Example Designs

Vivado 2014.4 was used in all example designs and documentation included in this distribution.
We highly recommend using 2014.4 and all newer versions of the software, since we have encoun-
tered bugs in previous versions of the Vivado (e.g. 2014.2) software. This guide assumes that
the end-user has already configured their board for PCI Express operation. See the VC709 User
Guide !, VC707 User Guide ? or ZC706 User Guide 3.

While we have not tested all of the current-generation Xilinx development boards, we are confident
that they can be supported with minimal modifications. For more information about supporting
new boards, see the sections 4.1.2 and 4.2.2. These sections cover the settings used in the RIFFA
example design IP.

The easiset way to use RIFFA is to start with one of the example designs included in the dis-
tribution. Sections 4.1.1 and 4.2.1 describe how to use and compile these designs for the VC707
and VCT709 boards respectively. These example designs are ready to compile out of the box, and
require no user IP configuration and generation. The designs also include pre-compiled bit-files in
the bit directory of the example project. For advanced users, we also describe how we generated
the PCle IP in sections 4.1.2 and 4.2.2.

4.1 Classic - 7 Series Integrated Block for PCI Express - (VC707, ZC706 and
older)

This is a step by step guide for using RIFFA 2.2.2 on a Xilinx FPGA with the 7 Series Integrated
Block for PCI Express Core. This core is supported on the ZC706, and VC707 development
boards, using the 64-bit and 128-bit AXI interfaces.

4.1.1 VC707 and ZC706 Example Designs

There is one VC707 example design and two ZC706 example designs in the RIFFA 2.2.2 distribu-
tion. The VC707 example design folders are in RIFFA 2.2.2/source/fpga/vc707 and the ZC706
example design folders are in RIFFA 2.2.2/source/fpga/zc706.

1. Open Vivado to get the introductory screen shown in Figure 4.1.
2. Click 'Open an Existing Project” and navigate to your RIFFA 2.2.2 directory.

3. In the RIFFA 2.2.2 distribution, open RIFFA 2.2.2/source/fpga/xilinz/vc707/ or RIFFA
2.2.2/source/fpga/zc706 and choose from one of the existing example design directories for
your board. In the example design directory, locate the prj folder and open it. Select the
xpr file and click open. This will open the example project, as shown in Figure 4.2.

4. This project was compiled in Vivado 2014.4. The bit file generated can be used to test the
FPGA system. If you are using a newer version of Vivado, recompile the example design or
use the programming file provided.

L http://www.xilinx.com/support/documentation/boards_and kits/vc709 /ug887-vc709-eval-board-v7-fpga.pdf

2 http://www.xilinx.com /support/documentation/boards_and kits/vc707 /ug848-VC707-getting-started-
guide.pdf

3 http://www.xilinx.com /support/documentation/boards_and kits/zc706 /ug954-zc706-eval-board-xc7z045-ap-
soc.pdf

Vivado 2014.4
File Flow Tools Window Help Q-

VIVADO! o s £ XILINX

Quick Start

Create New Project Open Project Open Example Project

3 Tcl console

Figure 4.1: Welcome Screen for Vivado 2014.4

e [P Settings are now packaged as part of the example designs! Users no longer need to
generate IP.

e To recompile the example design, click the generate bitstream button in the top left
corner as shown in Figure 4.2.

e Recompiling your design will generate a new bitfile in the Xilinx project. The bit file
in the bit will not be changed.

5. To program the FPGA, click ’'Open Hardware Manager’. New bit files (generated by Vivado)
will appear in Vivado’s internal directory. An example bit file is provided in the example
design’s bit. Load the bitstream to your VC707 or ZC706 board and restart your computer.

e Before programming your FPGA, you should install the RIFFA driver. See Section 3

6. The example design uses the chnl_tester (shown in Figure 4.3, which works with the example
software in the source/{ C_.C++,Java,python,matlab} directories. Replace the chnl tester
instantiation with any user logic, matching the RIFFA interface.

7. Recompile the design and program the FPGA Device. Changing the C_NUM_CHNL will
change the number of independent channel interfaces
4.1.2 Generating the 7 Series Integrated Block for PCI Express

The following steps are not required for general users. See the instructions above for how to
compile RIFFA.

Alternatively, it is possible to generate the PCle Endpoint with different settings than those
provided in the example design. Modifying the RIFFA parameters C_.PCI_DATA_WIDTH,
C_MAX PAYLOAD_BYTES and C_LOG_-NUM_TAGS, change certain settings in the IP

15

VC707_Gen1x8if6a - [

Eile Edit Flow Tools Window Layout View Help

A2ovoRkX|(® D> % S X T G[HEoefut Layout)8 ALY

707/VC707_Gen1x8If64/VC707_Genlx8If64.xpr] - Vivado 2014.4

Synthesis and Implementation Out-of-date more info

Flow Navigator «| | Project Manager Vc707_Genlx@if64 x
== Sources — O X | LProject Summary X oo x
az4 e R[E = - o)
4 Project Manager] 'A'Des . S:Jm’? = Project Settings Edit
- Design Sou =
@ Project Settings o ‘v‘-;,ueg Header (9 Project name: VC707_Genlx@If4
&% Add Sources Project location: 707_Genli@ifsa
@ Language Templates -9 vc7orce Product family Virtex7
£k 1P Catalog mulation Sources (11) Project part: Virtex-7 VC707 Evaluation Platform (xc7v4g5tffq1 761-2)
Top module name: VC707GenlxEifsa
+ 1P Integrator
create Block Design Board Part
B¥ Open Block De: Display name: Virtex-7 VC707 Evaluation Platform
. Board part name: linx.come707:1.1
Repository path: . {_parts
“ simulation URL: www.xlin. compve707
& simulation Settings Board overview: Virtex-7 VC707 Evaluation Platform
@ Run Simulation =
Hierarchy IP Sources Libraries Compile Order Synthesis 2 Implementation
4 RTL ‘:}"E‘Y“ 4 Sources | ¥ Templates status: & Outofdate status Outeof-date
5% Open Elaborated Design -
Properties —oex Messages: (262 warnings Messages ® 13 warnings
4 Synthesis « »[Bx Active run: - synth 1 Active run: impl_ 1
Synthesis Settings Part: *CTudB5tffg1761-2 Part: HCTWABSHIfgL761-2 I
y 9
$ Run Synthesis Strategy: Vivado Synthesis Defaults Strategy: Vivado Implementation Default
¥ Open Synthesized Design Incremental compile: None
Summary Route Status
4+ implementation
45 Implementation Settings DRC Violations 2 Timing - Postmplementation
> Run Implementation
& Open Implemented Design summary: @ 0 errors Worst Negative Slack (WNS): 0.366 ns
® 0 critical warnings Total Negative Slack (TNS): 0 ns
“ Program and Debug ©5 warnings Nurber of Failing Endpoints: 0
) Bitstream Settings @ 0 advisories Total Number of Endpoints: 24750
% Generate Bitstream Implemented Timing Report
¥ Open Hardware Manager =
Design Runs —oux
|_constraints | wNs | TNS | WHS | THs | TPws | FailedRoutes | LUT | FF | BRAM | DSP | Start | Elapsed | Status L Prc
o oL synth 1 (acive trs 1 151 117 0.00 271115839AM 00:01:12 Synthesis Out-of-date [
@ Lol impl e! constrs_1 0.37 0.00 004 0.00 0.00 0 236 176 320 0.00 21 00:05:1 i f-d.
£ ¢© Out-of-Context Module Runs
5 &V PCleGenlx@ifod_synth 1 PCleGenlxeifos 142 098 078 000 2/10458&O01AM 00:02:40 synth_design Complete! —
L]
»
«
B4
B]

STcl Console O Messages | Log 1 Reports 3 Design Runs

Figure 4.2: Project Splash Screen for 7Series Integrated Block for PCI Express Projects

LEstenw 325 for (chnl = @; chnl < C_NUM_CHNL; chnl = chnl + 1) begin : test_channels
326 chnl_tester
327 #(
328 .C_PCI_DATA WILTH(C_PCI_DATA WIDTH)
329 J
330 modulel
331 (.CLK(user_clk),
332 .RST(rst_out), /7 riffa_reset includes riffa_endpoint resets
333 // Rx interface
334 LCHNL_RX_CLK{chnl_rx_clklchnl]l},
[335 . CHNL_RX (chnl_rx[chnl]],
\pile Order 336 .CHNL_RX_AcCK({chnl_rx_acklchnl]),
337 L CHNL_RX_LAST (chnl_rx_lastl[chnl]l),
338 LCHNL_FX_LEN{chn1l_rx_len[32*chnl +:32]),
oD@ R 339 L CHNL_RX_OFF{chnl_rx_off[31*chnl +:31]),
= 340 . CHNL_RX_DATA(chn1_rx_data[C_PCI_DATA_WIDTH*chnl +:C_PCI_DATA_WIDTHI),
341 .CHNL_RX_DATA_VALID({chnl_rx_data_valid[chnl]),
342 .CHNL_RX_DATA REN(chnl_rx_data_ren[chnl]},
343 // Tx interface
T4 344 LCHNL_TX_CLK{chnl_tx_clklchnl]},
hirepositories/gitT) 345 LCHNL_TX{chnl_tx[chnl]),
346 .CHNL_TX_ACK({chnl_tx_ack[chnl]),
347 LCHNL_TX_LAST (chnl_tx_lastlchnl]},
343 LCHML_TX_LEN{chnl_tx_len[32*chnl +:32]),
349 LCHNL_TX_OFF{chnl_tx_off[31*chnl +:31]),
350 . CHNL_TX_DATA(chnl_tx_data[C_PCI_DATA_WIDTH*chnl +:C_PCI_DATA_WIDTHI),
351 LCHNL_TX_DATA_VALID({chnl_tx_data_valid[chnl]),
352 LCHNL_TX_DATA_REN(chnl_tx_data_renlchnl])
353)
354 end
355 endgenerate
[] 356 endmodule
& 357// Local Variables:
[«] m
Madified | Size | GUI Report |
Y17/15 10:29 AM 247.9 KB

Figure 4.3: Project Splash Screen for 7Series Integrated Block for PCI Express Projects

Core. The C_NUM_LANES is a parameter in the top level file of each example project. How
these parameters relate to IP core settings is highlighted in the following figures.

If the goal is to generate a RIFFA design completely from scratch, each board directory comes
with a RIFFA wrapper verilog file and instantiates a vendor-specific translation layer. It is highly
recommended to re-use these files RIFFA wrapper when creating designs from scratch.

To generate the PCle IP select the 7 Series Integrated Block for PCI Express after selecting the TP
Catalog shown in Figure 4.2. This will open the IP Customization window as shown in Figure 4.4

Re-customize IP
7 Series Integrated Block for PCI Express (3.0) ’

0 Documentation 1P Location € Switch to Defaults

[IShow disabled ports Comp Name [FCleGenL@if6d |
[

IDs BARs Core Capabilties | Link Registers _Interrupts _Power Management | Ext Capabilities _Ext Capabilities-2 TL Settings | DL & PL Settings ~ Shared Logic Core Interface Parameters

ced -

Device Port Type [PCI Express Endpoint device ~ | xilinx Board [vc707 -
PoleSlock tocation [0] silcon Revision

Number of Lanes. Masdimurn Link Speed
tane width 8~ | ©256T5 05.06Ts

A Interface Frequency. X Interface Width

Frequency (MHe) @64t O128bi
Reference Clock Frequency (MHz) looMHz -

i E | Tonde confuration
i
1 @nNone O Tandem PROM (Refer PG054) O Tandem PCle (Refer PG054)

IPE Mode Simulation:

©Mone O Enable Pipe Simulation O Enable Bxternal PIPE Interface

[DIEnable External STARTUP primitive [JEnable Bxteral GT Channel DRP.

[Addtional Transceiver Control and Status Ports []FCle DRP Ports

o [corcal]

Figure 4.4: Basic settings tab.

First, select Mode to ADVANCED from the drop down menu. This will cause more tabs to
appear in the bar. The following tabs are not used during customization: Link Registers, Power
Mangement, Ext. Capabilities, Ext. Capabilities 2, TL Settings and DL/PL Settings.

In Figure 4.4 , we have set the Xilinx Development Board to VC707, selected the PCle Genl
rate 2.5 GT/s, and a Lane Width of 8 (C_NUM_LANES = 8). We have chosen to set the
AXTI Interface Width to 64-bits (C_PCI_DATA_WIDTH = 64). The choice of Link Rate,
Lanes, and Interface Width will allow different AXI Interface Frequencies to be selected. The
RIFFA core will run at this clock frequency, but the user logic can run at whatever frequency it
desires.

Optional: Set the Component Name of the PCI Express block, and the IP Location. In our
example projects, we use the name template PCleGenWxYIfZ where W is the PCI Express
Version (Link Speed in Figure 4.4), Y is the lane width, and Z is the AXT interface width. The
IP location is the ip directory in the example project.

17

Re-customize IP x|

7 Series Integrated Block for PCI Express (3.0) '

0 Documentation 5 IP Location € Switch to Defauits

[Show disabled ports Component Name [PCieGenlxaod |

Basic IDs BARs | Core Capabiltie Specffies the name of the HOL wrapper|anagement | Ext Capabllties Ext Capabilties2 TL Settings DL &PL Settings _Shared Logic _Core Interface Parameters

D Initial Values

Vendor o Rangs: 0000, FFFF
Device D [7818] Range: 0000.F¥FF
Revision D Range: 00.F
Subsystem Vendor D Rangs: 0000, FFFF
Subsystem 10 Range: 0000, FFFF

Class Code

[JUse Class Code Lookup Assistant

Base Class Menu [simple controllers -]
] Base Class [os. | Range: 00..FF
i i Sub Class Interface Menu [Generic XT compatible serial controller -]
Sub-Class [80 | Range: 00..FF
Interface 3] Range: 00..FF
Class Code (Hex): 56000]
Cardbus CIS Pointer [00000000] Range: 00000000, FFFFFFFF

Coma]

Figure 4.5: PCI Express ID Tab.

The tab in Figure 4.5 is optional. Setting the Device ID may assist in identifying different FPGAs
in a multi-FPGA system. The other options, specifically the Vendor ID, must remain the same.

Re-customize IP x|
7 Series Integrated Block for PCI Express (3.0) P

 Documentation 5 IP Location €3 Switch to Defaults

[Show disabled ports Component Name [PCieGenlxaiiod)
[

Basic | IDs BARs Core Capabilties | Link Registers Interrupts Power Management | Ext Capabilties Ext Capabilities-2 TL Settings | DL & PL Settings Shared Logic _ Core Interface Parameters

Base Address RegigBARs PARS) serve two purposes. Initially, they serve s a mechanism for the device to request blocks of address space in the system memory
map. After the BIOS oF OS determines what addresses to assign to the device, the Base Address Registers are programmed with addresses and the device uses
this information to perform acdress decoding,

[#8ar0 Enabled [JBarl Enabled

Type Dleabit [Prefetchable Type [Dleabit OPrefetchable

szeunt [Kiobytes | Sie Value sceunt [Size Value [2
Value (Hex): [FFFFFCO0 Value (Hex): [50000060
[Bar2 Enabled [Bar3 Enabled
Type A Dsabit [Prefetchable Type n D6abit [OPrefetchable
4 1 SceUnt [Kiobytes =] Skevalue [2 SeoUnt [dot St value [2
A Value (Hex): [20000000 Value (Hex): [10000000
[Bar4 Enabled [Bars Enabled
Type A] Osabit DPrefetchable Type [nva O Prefetc

Seeunt [iobytes <] seevalue 2] seunt ¢ ste value

Value (Hex): 00000000 Value (Hex): [00000000

[Expansion Rom Enabled

sie] [Gisbyts

Value (Hex): [00000000]

=l

Cancel

Figure 4.6: PCI Express Base Address Register (BAR) ID Tab.

The tab in Figure 4.6 must be configured so that BARO is enabled (checked). Set the Type to
Memory, and Unit Kilobyte, and Size Value to 1 from the dropdown menus. If these values
are not set correctly the RIFFA driver will not recognize the FPGA device.

18

7 Series Integrated Block for PCI Express (3.0)

0 Documentation 5 IP Location € Switch to Defauits

Re-customize IP

Component Name [PCleGen1x@ifed

[show disabled ports

Basic IDs BARs Core Capabilities Link Registers Interrupts Power Management Ext Capabllities Ext Capabilities-2 | TL Settings DL & PL Settings | Shared Logic | Core Interface Par 4 » &

Capabilties Register Core Capabilties]
Capabilty Version (Hex): [2
Device Fort / Type [Pl Express Endpoint_device]

D slot Implemented

Capabilities Register (Hex):

BRAM Configuration Options

Performance Level | Transmit TLPs Buffered | Receiver Buffer Size (bytes) | Posted

Device Capabilities Register

[Brabges]
[J extended Tag Default

Acceptable L1 Latency No limit -
Device Capabilties Register (Hex); [D0000E22

Max Payload Size
@ Extended Tag Field
Phantom Functions

Acceptable L0s Latency

[Buffering Optimized for Bus Mastering Applications [Finite Completion

Credits | Non-posted Header/Data Credits

|_Completion Header/Data Credits | _Total BRAM:

i J High
20 16384

[OIbisable Completion Timeout

Completion Timeout
Supported Ranges
Range A: 504s to 10ms
Range B: 10ms to 250ms
Range C: 250ms to 4s
Range D: 4s to 64s

Device Capabllties 2 Register (Hex): [00000002

/64 a8

Ple 2.1 Specfic

CIUR Atomic

[32+bit AtornicOp Completer Supported

[64-bit Atomicop Completer Supported

[1128-bit CAS Completer Supported
TPH Completer Supported 00 -

4RI Forwarding Supported 0 Atormicop Roting Supported

721338
721850 8

1 o}

[camea J

Figure 4.7: PCI Express Capabilities Tab.

In this tab select the boxes Buffering Optimized for Bus Mastering Applications and
Extended Tag Field. If the Extended Tag Field is selected C_LOG_NUM_TAGS = 8,
otherwise C_.LOG_NUM_TAGS = 5. Select the Maximum Payload Size from the dropdown
menu. Use this to set the RIFFA C_MAX_PAYLOAD_BYTES parameter.

Note: Maximum Payload sizes are typically set by the BIOS, and 256 bytes seems to be standard.
RIFFA will default to the minimum of C_MAX PAYLOAD_SIZE and the setting in your

BIOS. Unless your BIOS is modified, or can support substantially larger packets, there will be

no performance benefit to increasing the payload size. Increasing the maximum payload size will

increase the resources consumed.

7 Series Integrated Block for PCI Express (3.0)

0 Documentation (5 IP Location € Switch to Defauits

Re-customize IP

[Show disabled ports Component Name [PCleGen1@fod

Basic IDs BARs Core Capabilities Link Registers Interrupts Power Management Ext Capabiliies Ext Capabilities-2 TL Settings | DL &PL Settings | Shared Logic Core Interface Parameters

Legacy Interrupt Settings

[CEnable intx
Interrupt PN |

MSI Capabilties
[Enable MSI Capabilty Structure
[64 bit Address Capable
Multiple Message Capable

[Per Vector Masking Capable

] MSix Capabilties

[Enable Msi Capabilty Structure

MSb Table Settings
TableSie (He: [1 | Range:1.800
Table Offset [0] Range: 0.1FFFFFFF

BAR Indicator

Msi Pending Bit Array (PE/) Settings

o Range: 0..1FFFFFFF

PBA BAR Indicator [247

PBA Offset

o[camea J

Figure 4.8: PCI Express Interrupts Tab.

19

In the Interrupts Tab shown in Figure 4.8 clear the checkbox for Enable INTx (To disable
INTx). The remaining options should match those shown in Figure 4.8

Re-customize IP x |
7 Series Integrated Block for PCI Express (3.0)

i Documentation (1P Location € Switch to Defaults

[Show disabled ports Component Name [PCieGenlxaiod

Basic | IDs BARs Core Capabilties | Link Registers | Interrupts | Power Management | Ext Capabilities Ext Capabities-2 L Settings | DL & PL Settings ~ Shared Logic | Core Interface Parameters
shared Logic

Select whether Clocking and/or Transceiver GT_COMMON s included in the core itself or in the example design.
[llinclude Shared Logic in core]

[Cinclude shared Logic (Clocking) in example design

[include Shared Logic (Transceiver GT_COMMON) in example design
Shared Logic Overview

Core with no Shared Logi

The CLOCKING and GT_COMMON used by this core are located in this IP core, and not available for sharing with other IP core
~This option was also available with previous versions of the ca

1 i Example Design
i]

Core with No shared Logic

[Gancel |

Figure 4.9: Shared Logic Tab

In the Shared Logic Tab shown in Figure 4.9 clear all of the checkboxes shown. These settings

will not affect the core generated, but will affect the example designs generated by Vivado. As a
result, the Example Design will mirror the RIFFA example design provided.

Re-customize IP x|
7 Series Integrated Block for PCI Express (3.0)

0 Documentation 5 IP Location € Switch to Defauits

[Ishow disabled ports Component Name [FCieGenb@ifod

Basic IDs | BARs Core Capabilities = Link Registers Interrupts =Power Management Ext Capabilties | Ext Capabilities-2 | TL Settings ' DL & PL Settings = Shared Logic Core Interface Parai 4 » @
[CJFLinterface|

[€rror Reporting

[Config Management Interface
[Config CTRL Interface

[Config Status Interface
[JReceive Msg Interface

[config FC Interface

o I camea J

Figure 4.10: Core Interface Parameters Tab

Finally, in the Interface Parameters tab, match the checkboxes shown in Figure 4.10. These
options simplify the interface to the generated core

20

4.1.3 Creating Constraints files for the VC707 Development Board

When generating a design for the VC707 board, the following constraints will correctly constrain
the clocks. When using a different board, read the user guide for appropriate pin placment, or
copy the constraints from the PCle Endpoint Example Design. The remaining constraints are
contained the generated PCle IP.

Listing 4.1: .xdc constraints for the VC707 board

set_property PACKAGE_PIN AV35 [get_ports PCIE_RESET_N]

set_property IOSTANDARD LVCMOS18 [get_ports PCIE_RESET_N]

set_property PULLUP true [get_ports PCIE_RESET_N]

The following constraints are BOARD SPECIFIC. This is for the VC707
set_property LOC IBUFDS_GTE2_X1Y5 [get_cells refclk_ibuf]

create_clock -period 10.000 -name pcie_refclk [get_pins refclk_ibuf/0]
set_false_path -from [get_ports PCIE_RESET_N]

4.1.4 Creating Constraints files for the ZC706 Development Board

When generating a design for the ZC706 board, the following constraints will correctly constrain
the clocks. When using a different board, read the user guide for appropriate pin placment, or
copy the constraints from the PCle Endpoint Example Design. The remaining constraints are
contained the generated PCle IP.

Listing 4.2: .xdc constraints for the ZC706 board

set_property IOSTANDARD LVCMOS15 [get_ports PCIE_RESET_N]

set_property PACKAGE_PIN AK23 [get_ports PCIE_RESET_N]

set_property PULLUP true [get_ports PCIE_RESET_N]

The following constraints are BOARD SPECIFIC. This is for the ZC706
set_property LOC IBUFDS_GTE2_X0Y6 [get_cells refclk_ibuf]

create_clock -period 10.000 -name pcie_refclk [get_pins refclk_ibuf/0]
set_false_path -from [get_ports PCIE_RESET_N]

21

4.2 Ultrascale - Gen3 Integrated Block for PCI Express - (VC709 and newer)

This is a step by step guide for building a RIFFA 2.2.2 reference design for Xilinx FPGA’s com-
patible with the Gen3 Integrated Block for PCI Express. In RIFFA 2.2.2 there are three example
designs for the VC709 board in the RIFFA 2.2.2/source/fpga/vc709 directory: VC709_Genlx8If64
(PCIe Genl, 8 lanes, 64-bit CHNL interface), VC709_Gen2x8If128 (PCle Gen2, 8 lanes, 128-bit
CHNL interface), VC709_Gen3x4If128 (PCle Gen3, 8 lanes, 128-bit CHNL interface). To use one
of these example designs, follow the instructions below.

4.2.1 VC709 Example Designs

1. Open Vivado to get the introductory screen shown in Figure 4.1.
2. Click 'Open an Existing Project” and navigate to your RIFFA 2.2.2 directory.

3. In the RIFFA 2.2.2 distribution, open RIFFA 2.2.2/source/fpga/xilinz/ve709/ and choose
from one of the existing example design directories for your board. In the example design
directory, locate the prj folder and open it. Select the .xpr file and click open. This will
open the example project, as shown in Figure 4.11.

4. This project was compiled in Vivado 2014.4. The bit file generated can be used to test the
FPGA system. If you are using a newer version of Vivado, recompile the example design or
use the programming file provided.

e IP Settings are now packaged as part of the example designs! Users no longer need to
generate IP.

e To recompile the example design, click the generate bitstream button in the top left
corner as shown in Figure 4.11.

e Recompiling your design will generate a new bitfile in the Xilinx project. The bit file
in the bit will not be changed.

5. To program the FPGA, click 'Open Hardware Manager’. New bit files (generated by Vivado)
will appear in the Vivado generated directories. An example bit file is provided in the
example design’s bit. Load the bitstream to your VC709 board and restart your computer.

e Before programming your FPGA, you should install the RIFFA driver. See Section 3

6. The example design uses the chnl_tester (shown in Figure 4.3, which works with the example
software in the source/{ C_C++,Java,python,matlab} directories. Replace the chnl tester
instantiation with any user logic, matching the RIFFA interface.

7. Recompile the design and program the FPGA Device. Changing the C_ NUM_CHNL will
change the number of independent channel interfaces

4.2.2 Generating the Gen3 Integrated Block for PCI Express

The following steps are not required for general users. See the instructions above for how to
compile RIFFA.

Alternatively, it is possible to generate the PCle Endpoint with different settings than those pro-
vided in the example design. Changing the endpoint settings is required when changing the param-
eters C_.PCI_DATA_WIDTH, CCMAX PAYLOAD_BYTES and C_LOG_-NUM_TAGS.
The C_NUM_LANES is a parameter in the top level file of each example project. How these
parameters relate to IP core settings is highlighted in the following figures.

22

VC709_ Gen1xaifes 709 709

Flo ESt Flow Tools Widow Laout View Holp

AR (@oRmBbX (> D> B[S K E GEocutigon X & %[O

Flow Natigator | | Project Manager vc709_semseisa

amzs Sources
axz

- Vivado 2014.4

Synthesis and implementation Out-of-date

— 0 % | Zproject summary x

 Project Manager

Project Settings £y
@ Project sattngs bl

Ver0s Genatse

 Gervsaifsi

¥ tanguage Templates
1F P catalog

Board part 2
Orspieyname:

Wador2014 4ndataboards/board_parts

Platorn

Implementation 2
+ RTLAnatsis

A utordate
52 0pen Elaborated Design .

+ symtnesis
@ synithesis Settings

& Fun syrthesis
52 0pen Synthesced Design

DRC Vialatians

Summary: O
®

-+ Program and Debug ® o
@ Bitstraam Sattings @5 advsories
¥ Generate atstreom

& 0pon Hardvare Manager

s | T | s | s | TPws | Faledfoutes | Lr | P | saw | ose |
106 .63

012 000 002 000 000 0 17 122 25 000 21015aaaPM 000%05

111 063 061 000 21015827AM 00:01:34 s

St Consols © Messages Glog [fReporis 9 Design Runs

Figure 4.11: Project Splash Screen for Gen3 Integrated Block for PCI Express Projects

If the goal is to generate a RIFFA design completely from scratch, each board directory comes
with a RIFFA wrapper verilog file and instantiates a vendor-specific translation layer. It is highly
recommended to re-use these files RIFFA wrapper when creating designs from scratch.

To generate the PCle IP select the 7 Series Integrated Block for PCI Express after selecting
the IP Catalog shown in Figure 4.11. This will open the IP Customization window as shown in
Figure 4.12

Customize IP x
Virtex-7 FPGA Gen3 Integrated Block for PCl Express (3.0) ’
i Documentation [5 1P Location €3 Switch to Defaults
[show disabled ports Cornponent Mame [PCleGenl:8if6d]
5 Basic Capabilties PFOIDs PFOBAR Legacy/MslCap MsiCap Power Extd. Capabil Extd. Capabil Shared Logic Core Interface Paramsters

Device / Port Type Reference Clock Frequency (MHz)
—
silicon Revision

PCle Block Location [x0Y

Number of Lanes Mawimum Link Speed
Lane width @256Ts O506Ts O8.0GTs
AXI-ST Interface Width AXIST Interface Frequency (hiHz)
®6abit 0128 bit AXIST Interface Frequency {MHz)
AXI-ST Alignment Mode Tandem Configuration
® DWORD Aligned O Address Aligned ®HNone O Tandem PROM (Refer PG023) O Tandern PCle (Refer PG023)

FIPE Mode Simulations

©@nNone O Enable Pipe Simulation O Enable External PIPE Interface
I Enable AXI-ST Frame Straddle [JEnable External GT Charinel DRP.
[pisable Client Tag [JEnable RX Message INTFC
[Additional Transceiver Control and Status Ports [CIPCle DRP Ports
O Enable External STARTUP primitive [Enable Powerdown Interface

[Comea]

Figure 4.12: Basic settings tab.

First, select “ADVANCED” from the drop down menu. This will cause more tabs to appear in
the bar. The following tabs are not used during customization: MSIx Cap (Capabilities), Extd.

23

Capabilities 1, and Extd Capabilites 2.

In this example, we have set the Xilinx Development Board to VC709, and selected the PCle
Genl rate of 2.5 GT/s, and a Lane Width of 8 (C_.NUM_LANES = 8). We have chosen to
set the AXI Interface Width to 64-bits (C_PCI_DATA_WIDTH = 64). Finally Clear the
Disable Client Tag and PCIe DRP Ports boxes. The choice of Link Rate, Lanes, and
Interface Width will allow different AXI Interface Frequencies to be selected. The RIFFA core
will run at this clock frequency, but the user logic can run at whatever frequency it desires.

Optional: Set the Component Name of the PCI Express block, and the IP Location. In our
example projects, we use the name template PCleGenWxYIfZ where W is the PCI Express
Version (Link Speed in Figure 4.12), Y is the lane width, and Z is the AXI interface width.
The IP location is the ip directory in the example project.

Note: For RIFFA 2.2.2 the 256-bit interface is not supported, however the 128-bit interface is.
This means PCle Gen2 with 8 lanes, and PCle Gen3 with 4 lanes are both supported.

Customize IP
Virtex-7 FPGA Gen3 Integrated Block for PCl Express (3.0) '

i Documentation [5 1P Location €3 Switch to Defaults

[show disabled ports Cornponent Mame [PCleGenlx8if6d]

[Basic Capabilities PFOIDs PFOBAR Legacy/MS|Cap MSi Cap Power Manag Extd. Capabil Extd. Capabil Shared Logic | Core Interface Par 4 » B

Physical Functio Capabilties
Enable Physical Function 0

[J/Enable Physical Function 1

Device Capabilties Register PF Link Status Register

PFO Max Payload Size [512 bytes < | PFL Max Payload Sze [512bytes - | Selects whether the device reference clock i provieed by the connector

(Synchronous) or generated via an onboard FLL(Asynchronous)

[Extended Tag Field [Enable Slot Clock Configuration

[sRioV Capability [Function Level Reset

Device Capabilties Register 2

. i [32-bit AtomicOp Completer Supported
] : [64-bit AtomicOp Completer Supported
[128-bit CAS Completer Supported

[TPH Completer Supported

GBFF Supported [00 Not Supported ~

oK [cancel

Figure 4.13: PCI Express Capabilities Tab.

In the Capabilities tab shown in Figure 4.13 check the Extended Tag Field box. If the Ex-
tended Tag Field is selected C_.LOG_-NUM_TAGS = 8, otherwise C_LOG_-NUM_TAGS
= 5. Set the PFO Max Payload Size from the dropdown menu; Use this to set the RIFFA
C_MAX_PAYLOAD_BYTES parameter.

Note: Maximum Payload sizes are typically set by the BIOS, and 256 bytes seems to be standard.
RIFFA will default to the minimum of C_MAX PAYLOAD_SIZE and the setting in your
BIOS. Unless your BIOS is modified, or can support substantially larger packets, there will be
no performance benefit to increasing the payload size. Increasing the maximum payload size will
increase the resources consumed.

24

Virtex-7 FPGA Gen3 Integrated Block for PCl Express (3.0)

i Documentation [5 1P Location €3 Switch to Defaults

Customize IP x |

[show disabled ports

Cornponent Mame [PCleGenlx8if6d

Basic Capabilities PFOIDs PFOBAR Legacy/MsiCap MSiCap Power Extd. Capabll Extd. Capabll Shared Logic | Core Interface Parameters
PFO - D Initial Values
Vendor ID Range: 0000.. FFFF
Device ID Range: 0000..FFFF
Revision ID Range: 00..FF
Subsystem Vendor ID Range: 0000.,FFFF
Subsystem ID Range: 0000..FFFF
Class code
[P0 Use Class Code Lookup Assistant
Base Class Value [simple communication controllers -]
Base Class [os | Range: 00..FF
Sub-Class/nterface Value [Generic XT compatible serial controller -]
Sub-Class [80 | Range: 00..FF
Interface [o0 | Range: 00..FF
Class Code [058000] Range: 000000, FFFFFF

The tab in Figure

© DI

Figure 4.14:

4.14 is optional.

PCI Express IDs Tab.

Setting the Device ID may assist in identifying different

FPGAs in a multi-FPGA system. The other options, specifically the Vendor ID, must remain the

same.

Virtex-7 FPGA Gen3 Integrated Block for PCl Express (3.0)

i) Documentation 5 1P Location CJ Switch to Defaults

Customize IP

[Show disabled ports
=

(D

Comnponent Name [PCleGenlxBIf6d

Basic Capabiliies PFO Ds PFOBAR Legacy/MsiCap MSikCap Power Management | Extd. Capabilties-1 Extd. Capabilties-2 | Shared Logic Core Interface Parameters
Base Address Registers (BARs) serve two purposes. Initiall, they serve as a mechanism for the device to request blocks of address space in the system memory
map. After the BIOS or 05 determines what addresses to assign to the device, the Base Address Registers are programmed with addresses and the device uses
this information to perform address decoding.

@ Bar0 Oearl
Type Oeabit [JPrefetchable Type [] Ofrefetchable
Size Unit Size value szeunt [l | size value
Value (Hexy: [FEFEFCOD Value (Hex): 00000000

Oear2 Oears
Type] Oeabit [OPrefetchable Type [] OPrefetchable
Size Unit | size value] Size Unit [ial | size value
Valle (Hex): 0000000 Vale (Hex): 00000000

Oeara Oears
Type] Oeabit [Oprefetchable Type 0] O Pprefetchable
Size Unit | size value] Size Unit ialo | size value [
Value (Hexy: [[O000000 Value (Hexy: [[O000000

[Expansion Rom
Size Unit [ia | size value
value (Hex

Figure 4.15: PCI Express Base Address Registers (BAR) Tab.

The tab in Figure 4.15 must be configured so that BARQ is enabled. Select type Memory, and
Unit Kilobyte, and Size Value 1 from the dropdown menus. If these values are not set correctly

25

the RIFFA driver will not recognize the FPGA device.

Customize IP
Virtex-7 FPGA Gen3 Integrated Block for PCl Express (3.0)

ffd Documentation [P Location €9 Switch to Defaults

[show disabled ports Comnporient Mame [PCleGenlxgif6d

Basic | Capabilities PFO IDs PFO BAR Legacy/MSl Cap | MslCap Power Management Extd. Capabilities-1 Extd. Capabilities-2 | Shared Logic Core Interface Par 4 P Bl

Legacy Interrupt Settings

PFO Interrupt PIN_ [N

[Enable MS! Per Vector Masking

Ms| Capabilities

[PFO Enable MsI Capability Structure

PFQ Multiple Message Capable

b=

Figure 4.16: PCI Express Legacy and MSI Interrupts Tab.

In the Legacy/MSI Capabilites tab shown in Figure 4.16, select None in the PFO Interrupt
Pin Dropdown menu and set the PFO Multiple Message Capable dropdown menu to 1

Vector

Customize IP
Virtex-7 FPGA Gen3 Integrated Block for PCl Express (3.0)

I Documentation [P Location (3 Switch to Defaults

[show disabled ports Component Mame [PCleGenlx8if6d

[Basic | Capabilities PFO IDs | PFO BAR | Legacy/MSI Cap MSixCap Power

Extd. Capabil

Extd. Capabil

shared Logic | Core Interface Pa 4 b B

Power Management Registers
It Support|
PME Support

Opo [pl [ID3hot

ASPM Support optionality
® No ASPM
O Los Supported

O L0s L1 Entry Supported

BRAM Configuration Options

hon-posted Header/Data Credits |

Completion H

der/Data Credits |

Total BRAMS Required |

Performance Level | Posted Header/Data Credits |
Extreme ~ 0x20/0xCC
0:20/0x198

0:20/0:28
0201028

LI

0000000
0000000

418

[Coamea]

Figure 4.17: PCI Express Power Management Tab.

26

In the Power Management tab, shown in Figure 4.17, ensure that the Performance Level is set

to Extreme.

Customize IP

Virtex-7 FPGA Gen3 Integrated Block for PCl Express (3.0)

i Documentation [IP Location €9 Switch to Defaults

[Show disabled ports

Comnponent Mame [PCleGenlx8if6d

Basic | Capabilities PFO IDs | PFO BAR | Legacy/Ms| Cap MsixCap Power Management = Extd. Capabilities-l | Extd, Capabilities2 Shared Logic

Core Interface Par; 4 » B

Shared Logic Extd, Capabilities-2
Select whether Clocking and/or Transcelver GT_COMMON is included in the core tself or in the example design.
[llinclude Shared Logic in core
[include Shared Logic (Clocking) in example design

[Include Shared Logic (Transceiver GT_COMMON) in exarple design

Shared Logic Overview

Core with no Shared Logic
- The CLOCKING and GT_COMMON used by this core are located in this IP core, and not available for sharing with other IP core
- This option was also available with previous versions of the core

Example Design

Core with No Shared Logic

Figure 4.18: PCI Express Shared Logic Tab.

[carce

In the Shared Logic Tab shown in Figure 4.18 clear all of the checkboxes shown. These settings
will not affect the core generated, but will affect the example designs generated by the Vivado,
and make the Vivado example design mirror the RIFFA Example design.

Customize IP

Virtex-7 FPGA Gen3 Integrated Block for PCl Express (3.0)

i Documentation [5 1P Location €3 Switch to Defaults

[show disabled ports

Component Name [PCleGenLuBifed

Capabilities | PFOIDs | PFOBAR Legacy/MS| Cap | Mk Cap | Power Manag! Extd. Capabil Extd. Capabil Shared Logic ~ Core Interface Parameters 4 b B

[ffransmit FG Interface]

[Config FC Interface

[Config Bt Interface

[Config Status Interface

[Per Function Status Interface
[config Management Interface
[Receive Message Interface
[config Tx Message Interface

[config Cortrol Interface

Figure 4.19: PCI Express Core Interface Parameters Tab.

—

cancel

27

Finally, in the Interface Parameters tab, match the checkboxes shown in Figure 4.19. These
options simplify the interface to the generated core

4.2.3 Creating Constraints files for the VC709 Development Board

When generating a design for the VC709 board, the following constraints will correctly constrain
the clocks. When using a different board, read the user guide for appropriate pin placment, or
copy the constraints from the PCle Endpoint Example Design.

Listing 4.3: .xdc constraints for the VC709 board

set_property
set_property
set_property
set_property

create_clock -period 10.000 -name pcie_refclk [get_pins refclk_ibuf/0]
set_false_path -from [get_ports PCIE_RESET_N]

The following constraints are BOARD SPECIFIC. This is for the VC709

LOC IBUFDS_GTE2_X1Y11 [get_cells refclk_ibuf]
PACKAGE_PIN AV35 [get_ports PCIE_RESET_N]
TOSTANDARD LVCMOS18 [get_ports PCIE_RESET_N]
PULLUP true [get_ports PCIE_RESET_N]

28

5 Compiling and using the Altera Example Designs

This section describes how to use RIFFA 2.2.2 with Quartus 14.1. The example projects included
in this distribution target Terasic DE5Net and DE4 boards. We are confident that RIFFA will
work on all currently supported Altera devices using the Hard IP for PCI Express (Cyclone V,
Arria V and Stratix V) devices, as well as all devices using IP Compiler for PCI Express (Stratix
IV and prior). For device support in Quartus 14.1see !

The FPGA families that we have successfully tested RIFFA 2.2.2 are:
e Stratix V (DE5-Net)
e Stratix IV (DE4)

There are three options for starting a new RIFFA project:

e For first-time users with a DE5 board, we recommend the archived projects provided in the

RIFFA 2.2.2/source/fpga/de5_qsys directory. Follow the instructions in Section 5.1.1

e Intermediate and advanced users, or users with a DE4 board, we have provided projects

without instantiated IP. For DE5 boards, follow the instructions in Section 5.1.2. For DE4
boards, follow the instructions in Section 5.2

e For advanced users, or users wishing to support a new board, we provide full instructions

for creating a top level and generating IP. Follow the instructions in Section 5.1

5.1 Example Designs with Qsys and MegaWizard (Stratix V, Cyclone V and

newer)

5.1.1 Qsys (Stratix V and newer)

For first-time users with the DE5-Net board, copy one of the archived projects (.qar files) available
in the deb_qsys directory.

1.
2.
3.

Open Quartus to get the introductory screen shown in Figure 5.1.
Click 'Open an Existing Project’ and navigate to your RIFFA 2.2.2 directory.

In the RIFFA 2.2.2 distribution, open RIFFA 2.2.2/source/fpga/des/ and choose from one
of the existing example design directories for your board. In the example design directory,
locate the prj folder and open it. Select the .qpf file and click open. This will open the
example project, as shown in Figure 5.2.

. This project was compiled in Quartus 14.1. The bit file generated can be used to test the

FPGA system. If you are using a newer version of Quartus, recompile the example design
or use the programming file provided.

e To recompile the example design, click the compile button in the top left corner as
shown in Figure 5.2.

L http://dl.altera.com/devices/

Messages.

Figure 5.1: Welcome Screen for Quartus 14.1

e Recompiling your design will generate a new bitfile in the prj directory. The bit file in
the bit will not be changed.

5. To program the FPGA, click ’Open Programmer’. New bit files (generated by Quartus) will
appear in the prj/output_files/ directory. An example bit file is provided in the example
design’s bit directory.

e Before programming your FPGA, you should install the RIFFA driver. See Section 3

6. The example design uses the chnl_tester (shown in Figure 5.3, which works with the example
software in the source/{ C_C++,Java,python,matlab} directories. Replace the chnl tester
instantiation with any user logic, matching the RIFFA interface.

7. Recompile the design and program the FPGA Device. Changing the C_ NUM_CHNL will
change the number of independent channel interfaces

5.1.2 Generating IP using MegaWizard (Stratix V, Cyclone V and newer)

In some cases, it may be necessary to generate the PCle Endpoint IP. For intermediate users,
there are project example projects inside of the de5 directory without instantiated IP (This is
done to avoid licensing problems). For the DE5, the project directories are: DE5Genlx8If64,
DE5Gen2x81f128, DE5Gen3x4If128.

Modifying the RIFFA parameters C_PCI_DATA_ WIDTH, C MAX PAYLOAD_BYTES
and C_.LOG_NUM_TAGS require changing certain settings in the IP core file. The paramter
C_NUM_LANES is located in the top level file of each example project. How these parameters
relate to IP core settings is highlighted in the following figures.

For advanced users whose goal is to generate a RIFFA design completely from scratch, we provide
instructions for generating the timing constraints and other low level details. Each board directory
contains with a RIFFA wrapper verilog file and instantiates a vendor-specific translation layer. It
is highly recommended to re-use these files RIFFA wrapper when creating designs from scratch.
Users should also use the constraints file (.sdc) in the board directory, and in the constr/, or
read the User Guide provided with each board and the instructions for generating constratints in
Section 5.1.3.

30

Quartus 1 6a-Bit - z i -+
File Edt View Project Assignments Processing Tools Window Help 3 [searcn ateracom | @
DB d@ s 9o Y WO C oG HU R 9 P A 9 D
Project Navigator ()

| bescenasaiize

~ 24 installed 1P
1P Component.
| one: ~ Project Directory
ALTGXPCleGen2x8 | ALTGX_RECONFIG No Selection Available
ALTPLLS0150012502500 ALTPLL Libray
1P Compller for Pcl Exprest » Basic Functions

» Interface protocols
» Memory Interfaces and Controllers
» Processors and Peripherals

@ Search for Partner IP

rchy |18 Fies | 7 Desin 0ns | 7 companents [,

Tasks LT

flow | comploton

Task
~ b Fitter (Place & Route)
= Edit settings
2 View Report
& Chip Planner

3 Technology Map Viewer (post-itting)
» > Design Assistant (Post-Fitting)
Ve files)
» - TimeQuest Timing Analysis
» b EDA Netist Writer

"6 s |
 Program Device (Open Programmer)
:
— .
IR e —

pe], 10, [peseace

[

g
2oy eacesing]

100% 00:08:05

Figure 5.2: Project Splash Screen for Quartus Projects

SR ELCE] FF INBLANLIALE diU dBHL1UN NGUULES LU RIFFA CLAINELS. USELS SHUULL
386 // replace the chnl_tester instantiation with their own core.
387 chnl tester ~
38 {
389 .C_PCT_DATA_WIDTH (C_PCT_DATA_WIDTH)
390)
391 modulel
32 H (
.CLK (chnl_clk), @

\RST (chnl_reset), // chnl_reset includes riffa endpoint resets
// Rx interface

.CHNL_RX_CLK (chnl_rx clk[il),

.CHNIL_RX (chnl_rx[il),

.CHNL_RX_ACK (chnl_rx_ack[il),

CHNL_RX_LAST (chnl_rx_lastl[il),

.CHNL_RX_LEN (chnl_rx_len[32%i +:32]),

.CHNL_RX_OFF (chnl_rx off [31*i +:31]),

. CHNIL_RX_DATA (chnl_rx_data [C_PCI_DATA_WIDTH*i +:C_PCI_DATA_WIDTHI]),
.CHNL_RX DATA VALID (chnl rx data valid[il).

. CHNIL_RX_DATA_REN (chnl_rx_data_ren[il),

// Tx interface

CHNL_TX_CLK (chnl_tx clk[il),

. CHNL_TX (chnl_tx[il},

CHNL_TX_ACK (chnl_tx_ack[il),

. CHNL_TX_LAST (chnl_tx_last[i]),

.CHNL_TX_LEN (chnl_tx_len[32%i +:32]),

CHNL_TX_OFF (chnl_tx off [31*i +:31]),

. CHNL_TX_DATA (chnl_tx_data [C_PCI_DATA WIDTH*i +:C_PCI_DATA WIDTH]),
.CHNL_TX_DATA VALID (chnl tx data valid[il).

. CHNL_TX_DATA_REN (chnl_tx_data_ren[i])

r end
418 L endgenerate
< 5 >

Figure 5.3: chnl_tester instantiation in the top level file

31

As stated in Section 2.3, each project directory contains five folders.

The prj/ directory contains the project .qpf and .gsf file.

The hdl/ contains the top level file, e.g. DE5Gen2x8If128.v, which instantiates the skeleton
IP and the RIFFA Core.

The ip/ directory is empty but will contain Altera IP generated by Quartus in the following
guide.

The constr/ directory contains project-specific timing constraint files.

Finally the bit/ directory contains the project .sof, or bit file that we have tested. This
bitfile will not be overwritten by subsequent Quartus compilations.

Note: The bitfile in the bit directory is not modified by recompilation in Quartus. Quartus will
generate a new bitfile (.sof) in the prj/ directory for the DE5Net board.

File Edit System Generate View Tools Help
$7 system Contents 32| Address Map 32
[=][=][] system: gsysDESGen1x@iiE4 Path: PCleGenLxifsd

Use Connections Name Description Export Clock Base
= =
@ B PCleGenlx8If64 |StratixV Hard IP for PCI Expre...
o npor Conduit pcienpor
Imi Conduit
aes! config_tl Conduit pciecfg
power_mngt Conduit
= m_st Avalon Streaming Source rx_st [pld_clk]
m_bar_be Conduit
= tr_st Avalon Streaming Sink tx_st [pld_clk]
tx_cred Conduit
= pld_clk Clock Input pciepld lexported
= coreclkout_hip Clock Output pciecoreclk PCleGenl...
= refclk Clock Input pcierefclk lexported
< hip_rst Conduit pciehip
reconfig_to_xcvr |[Conduit
reconfig_from_xcvr [Conduit
<A hip_serial Conduit pcieserial
hip_pipe Conduit
o int_msi Conduit pciemsi
hip_ctrl Conduit
o hip_status Conduit pciestat
hip_currentspeed |Conduit
B XCVRCtrlGenlx8 (Transceiver Reconfiguration ...
- reconfig_busy Conduit
(=] mgmt_clk_clk Clock Input mgmtclk lexported
=i mgmt_rst_reset Reset Input mgmtrst [mgmt_cl...
reconfig_mgmt Avalon Memary Mapped Slave [mgmt_cl... 0x0000 oxe1ff
reconfig_to_xcvr [Conduit
reconfig_from_xcvr |Conduit
B XCVRDrvGenlx8 |Altera PCle Reconfig Driver
=g reconfig_xcvr_clk |Clock Input reconfigrefclk lexported
=] reconfig_xcvr_rst |Reset Input reconfigrst [reconfig...
reconfig_mgmt Avalon Memory Mapped Master [reconfig. .
hip_currentspeed |Conduit
— reconfig_busy Conduit
=g pld_clk Clock Input reconfigpldclk lexported
< hip_status_drv Conduit drvstat

Current filter: All Interfaces

0 Errors, 12 Warnings

Figure 5.4: Qsys Diagram depicting the connections between the three Altera IP blocks.

Altera designs require additional IP to drive the PCle Core Transcievers. For the DES5, these
blocks are the Transciever Reconfiguration Controller and the Reconfiguration Driver. When

32

creating a new top level design, these blocks must be connected together with the PCle Endpoint
as shown in Figure 5.4.

First, we will generate the PCle Endpoint. Click on the Avalon Streaming Interface for PCI
Express in the Quartus IP Catalog. Figure 5.9.

Optional: Set the Component Name of the PCI Express block, and the IP Location. In our
example projects, we typically use the name PCleGenWxYIfZ where W is the PCI Express
Version (Link Speed in Figure 4.12), Y is the lane width, and Z is the Avalon interface width.
The IP location is the ip/ directory in the example project.

33

File Edit System Generate View Tools Help

System Contents & | Address Map & Im! Parameaters
system: QSysDESGenlx8lfs4 Path: PCleGenlxgIfg4

Stratix V Hard IP for PCI Express

altera_pcie_sv_hip_ast

[~ System Settings

Number of lanes:

Lane rate:

Port type:

PCl Express Base Specification version:

Application interface:

Reference clock frequency:

[JUse 62.5 MHz application clock

[Enable byte parity ports on Avalon-ST interface

[] Enable multiple packets per cycle

[[] Enable configuration via the PCle link

[]Use credit consumed selection port tx_cons_cred_sel
[] Enable Configuration Bypass

[]Enable Hard IP reconfiguration

Enable Hard IP completion tag checking

RX buffer credit allocation - performance for received requests: {Minimum

HE |w

Genl (2.5 Gbps)

w

Native endpoint

-

21[z]

|Ava|on—ST 64-bit |v|

[]Use deprecated RX Avalon-ST data byte enable port (rx_st_be)

[]Enable Hard IP reset pulse at power-up when using the soft reset controller

[~ Base Address Registers

BARO [BARL | BAR2 | BAR3 | BAR4 | BARS | Expansion ROM |

TyPe: |32-bit non-prefetchable memory |v|

Size: |1 kByte -10bits ||

[~ Base and Limit Registers for Root Port

Input/Output; Disabled v/

Prefetchable memaory: Disabled |v|
[~ Device Identification Registers

Wendor ID: |oxoo001172

Device ID: 0x00000001

Rewvision ID: 0x00000001

Class Code: 0x00000000

Subsystem Vendor ID: 0x00000000

Subsystem Device ID: 0x00000000

0 Errors, 12 Warnings

Figure 5.5: PCI Express Endpoint Configuration Menu

34

In Figure 5.5, select the Number of Lanes, which corresponds to the top level parameter
C_NUM_LANES, Lane Rate, and PCI Express Base Specification version from the drop-
down menus (Choose the highest possible base specification version). Select an Application
Interface Width; This corresponds to the C_.PCI_DATA_WIDTH parameter in RIFFA.
Currently the 64-bit and 128-bit interfaces are supported for all Altera designs. Some widths
may not be possible depending on the Lane Rate and Number of Lanes selected.

The choice of Link Rate, Number of Lanes, and Interface Width will set the frequency for
the PCI interface, which is clocked by the pld_clk signal. For the chosen settings, the frequency
should be displayed in the messages bar at the bottom of the configuration menu (Messages bar
not shown). The RIFFA core will run at this clock frequency, but the user logic can run at
whatever frequency it desires.

In the Base Address Registers Section set BARO’s type to 32-bit non-prefetchable memory
and set the size to 1 KByte - 10 Bits.

There are no required changes in the Device Identification Registers Section. However, in a
multiple FPGA system, it may be useful to change the Device ID to allow identification of
different FPGA platforms. The other options, specifically the Vendor ID, must remain the
same.

Scroll down to view the final two sections shown in Figure 5.6.

Subsystem Vendor ID: 0x00000000
Subsystem Device ID: 0x00000000

[~ PCI Express/PCI Capabilities
[Device | Error Reporting | Link | MSI | MSIX | Slot | Power Management | VSEC |

Maximum payload size: 255 Bytes :

Mumber of tags supported: |54 :

Completion timeout range: [agcp =

Implement completion timeout disable

[~ PHY Characteristics

Gen2 transmit deemphasis: =

[JUse ATX PLL

[]Enable Comman Clock Configuration (for lower latency)

0 Errors, 12 Warnings

Figure 5.6: PCI Express Endpoint Configuration Menu

In the PCI Express/PCI Capabilities menu, set your desired Maximum Payload Size, which
corresponds to the RIFFA parameter, C_MAX PAYLOAD_BYTES and the Number of
Tags Supported. The log of the Number of Tags Supported is the CLOG_-NUM_TAGS
parameter in RIFFA.

In the MSI Tab, make sure that the number of MSI messages requested is equal to 1.

Note: Maximum Payload sizes are typically set by the BIOS, and 256 bytes seems to be standard.
RIFFA will default to the minimum setting C_MAX _PAYLOAD_SIZE and the setting in your

35

BIOS. Unless your BIOS is modified, or can support substantially larger packets, there will be
no performance benefit to increasing the payload size. Increasing the Maximum Payload Size
will increase the resources consumed.

Finally, record the number of Transciever Reconfiguration Interfaces in the messages bar
at the bottom of the screen, then close the PCle IP Generation Menu. A window may ask if you
wish to generate the example design. This is optional.

Eile Edit System Generate View Tools Help
System Contents & | Address Map % | G8 Parameters &
System: QSysDESGenlx8lféd Path: XCWRCtriGenlxg

Transceiver Reconfiguration Controller
alt_xcwr_reconfig

[~ Parameters

Device family:

[~ Interface Bundles

Number of reconfiguration interfaces: |1c|

Optional interface grouping: [

{e.g.'2,2" or leave blank for a single bundle)

[~ Transceiver Calibration functions

MOTE - please refer to the device handbook for reset sequence requirements between the reconfiguration controller and transceiver PHY.

[[] create optional calibration status ports

[~ Analog Features
Enable Analog controls
[] Enable EyeQ blocl
[Enable Bit Error Rate Block
[[] Enable decision feedback equalizer (DFE) block

[] Enable adaptive equalization (AEQ) block

~ Reconfiguration Features
[] Enable channel/PLL reconfiguration

[[] Enable PLL reconfiguration support block

Figure 5.7: Transciever Reconfiguration IP Generation Menu

Next, generate the Transceiver Reconfiguration Controller by opening MegaWizard and selecting
the Transceiver Reconfiguration Controller megafunction.

Set the appropriate number of Transciever Reconfiguration Interfaces in the Interface Bun-
dles Menu. In the analog features section, Enable Analog Controls and Enable Adaptive
Equalization block by clicking the appropriate boxes.

Optional: Set the Component Name of the Transciever Reconfiguration Controller, and the IP
Location. In our example projects, we typically use the name XCVRCtrlGenWxY where W is
the PCI Express Version (Link Speed in Figure 5.5), Y is the lane width. The IP location
is the ip/ directory in the example project.

36

Eile Edit System Generate View Tools Help

System Contents £ | Address Map &2 | (@l Parameters &3
System: QSysDESGenlx8If64 Path: XCWRDrvGenlx8

Altera PCle Reconfig Driver
altera_pcie_reconfig_driver

[~ Parameters
Lane Rate: |Gen1 (2.5 Gbps) |v|

Number of reconfiguration interfaces: |10

[] Add cal_busy_in output port conduit

Figure 5.8: Transciever Reconfiguration Driver Menu

In Qsys, generate the Transciver Reconfiguration Controller. Select the appropriate lane rate for
your design, and the number of Reconfiguration Intefaces. These should match the number of
reconfiguration interfaces dictated when generating the PCle IP in Figure 5.5 and the number

selected in Figure 5.7.

Optional (in Qsys): Set the Component Name of the Transciever Reconfiguration Driver, and the
IP Location. In our example projects, we typically use the name XCVRDrvGenWxY where W
is the PCI Express Version (Link Speed in Figure 4.12), and Y is the lane width. The IP

location is the #p directory in the example project.

If you are using Megawizard to instantiate IP, you must manually instantiate the Transciver
Reconfiguration Driver in the Top Level design. The instantiation template is shown in Listing 5.1

into your top-level file. Match the PCle generation, and chip generation for your project.

Listing 5.1: Manual (non-gsys) instantiation of Reconfiguration Driver

altpcie_reconfig_driver

#(

/* These values should match the values used for the PCIe Endpoint */
.number_of _reconfig_interfaces (10), /*Set Thisx*/
.genl123_lane_rate_mode_hwtcl(‘‘Genl (2.5 Gbps)’’), /*Set Thisx*/
.INTENDED_DEVICE_FAMILY(‘‘Stratix V’’)) /*Set Thisx/
XCVRDriverGen2x8_inst

(

/*Ports Here -- Copy from Example Designs*/

);

37

5.1.3 Creating Constraints files for MegaWizard and QSys Designs

Advanced users may also want to edit and modify the constraint files. This not required or
recommended for novice users. The example designs in the RIFFA 2.2.2 distribution contain
appropriate constraint files for the example designs. However if the need arises, these constraints
are documented below.

To appropriately constrain your PCle reference clocks, place the constraints shown in Listing 5.2
in your .sdc file. Modify the names PCIE_ REFCLK, PCIE_TX_OUT and PCIE_RX_IN to match
your design.

Listing 5.2: .sdc constraints for Qsys and Megawizard designs

create_clock -name PCIE_REFCLK -period 10.000 [get_ports {PCIE_REFCLK}]
derive_pll_clocks -create_base_clocks
derive_clock_uncertainty

Likewise, copy the constraints in Listing 5.3 into your .gsf file. Copy the location assignment
commands for each PCle Pin in your reference design.

Listing 5.3: .gsf settings for Qsys and Megawizard designs

HARHBRBHBARBHBRARBAAABAARHBARHBABBBARAB AR BERAHRRBHBARHBRABRB AR BRARH

PCIE Connections

HAAHBHRBAH AR RRRBRR AR BRBBRHRAR B BB AR R AR B HRRH BB R B R BB BB R R RS R R R RS H
set_location_assignment <PCIE_REFCLK_PIN> -to PCIE_REFCLK
set_instance_assignment -name IO_STANDARD HCSL -to PCIE_REFCLK
set_location_assignment <PCIE_REFCLK_PIN(n)> -to ¢‘PCIE_REFCLK(mn)’’
set_instance_assignment -name IO_STANDARD HCSL -to ¢‘PCIE_REFCLK(n)’’
set_location_assignment <PCIE_RESET_N> -to PCIE_RESET_N
set_instance_assignment -name IO_STANDARD €¢2.5 V’’ -to PCIE_RESET_N

For each PCIE Lane (L) set the pin locations from the board user guide!
HARHARHARHABHRRRARHARHRRHRRRARBRARARRRRBRRRARBRABARBAR B AR BAR B AR B AR RAR S
#PCIE TX_O0OUT L
HARHARHBRHABHRRHRBHRBHRR BB HRRBRE R BB BB H R R R BB RR B AR BB B R R AR B R R AR RHR S
set_location_assignment <TX_LANE[L]_PIN> -to PCIE_TX_OUT[0]
set_location_assignment <TX_LANE[L]_PIN(n)> -to ¢‘PCIE_TX_O0UT([0](n)’’

BARHBRBHBARHBRB R B AR A B AR BB EABHBAR R B AR AR AR B AR A H AR B R BARHBAR R B AR HHARHH
#PCIE RX_IN L

HARHARABHBARHBRARB AR AR AR BB BABHBARRBARHBAA R B AR B H AR BB BARHBRR R B AR A B RRRH
set_location_assignment <RX_LANE[L]_PIN> -to PCIE_RX_IN[L]
set_location_assignment <RX_LANE[L]_PIN(n)> -to ¢‘PCIE_RX_IN[L](n)’’

38

5.2 IP Compiler for PCI Express (Stratix IV, and older)

To avoid licensing problems, we do not package Altera IP for the DE4 board. Manual IP In-
stantiation is required when using the DE4 Board, and similar devices using the IP Compiler for
PCI Express. Changing the endpoint settings described here may change the RIFFA parameters

C_PCI_.DATA WIDTH, C_MAX PAYLOAD _BYTES and C_.LOG_NUM_TAGS. How
these parameters relate to IP core settings is highlighted in the following figures.

There are sever example projects inside of the de4 directory folder without instantiated IP. For
the DE4 board, these projects are DE4Gen1x8If64, DE4Gen2x81f128.board.

As stated in Section 2.3, each project directory contains five folders.
e The prj/ directory contains the project .qpf and .qsf file.

e The hdl/ contains the top level file, e.g. DE5Gen2x8If128.v, which instantiates the skeleton
IP and the RIFFA Core.

e The ip/ directory is empty but will contain Altera IP generated by Quartus in the following
guide.

e The constr/ directory contains project-specific timing constraint files.
e Finally the bit/ directory contains the project .sof, or bit file that we have tested. This

bitfile will not be overwritten by subsequent Quartus compilations.

5.2.1 Generating IP with IP Compiler for PCI Express (Stratix IV, and older)

Note: The bitfile in the bit directory is not modified by recompilation in Quartus. Quartus will
generate a new bitfile (.sof) in the /output_files directory for the DE4 board.

First, we will generate the PCle Endpoint. Open the Altera IP Catalog and select the IP Compiler
for PCI Express. This will open the window shown in Figure 5.9.

Optional: Set the Component Name of the PCI Express block, and the IP Location. In our
example projects, we typically use the name PCleGenWxYIfZ where W is the PCI Express
Version (Link Speed in Figure 4.12), Y is the lane width, and Z is the Avalon interface width.
The IP location is the ip directory in the example project.

In this guide, we will skip the Power Mangement tab shown in Figure 5.9.

39

MegaWizard Plug-In Manager - IP Compiler for PCI Express
IP Compiler for PCI Express

e

PCI Reqgiste Capabilities Buffer Setup Management

rPCle Core Type
Hard IP for PCI Express

Hard IP for PCl Express
9 B The hard IP uses embedded dedicated logic to
1 Soft IP for PCI Express implement the PC| Express protocol stack, includin
data link layer and transaction layer.

~System Parameters for PCl Express

PHY type: PHY interface: Seria - | Configure transceiver block |
Lanes: ¥ovr ref cli Application interface:
Part type: PCI Express version: Application clock: 250 MHz -
Max rate: Test out width: HIP reconfig:

& Info: Native Endpeint implementation requires MSI message 64-bit address capsbility.
(& Info: Native Endpeint implementation doesn't support {0 or 32-bit Prefetchable memory BAR types.

| Cancel | = Back |ﬂekt > H Einish |

Figure 5.9: IP Compiler for PCI Express System Settings Tab

In the first column of the System Settings Tab, select your Chip Generation/PHY Type
(Stratix IV GX for the DE4 board), Lanes, and Max Rate. The Number of Lanes is
the parameter C_ NUM_LANES in the project top level file. In the second column, select the
PCI Express Version (2.0, or the highest possible) and set the Test Out Width to 0. In the
third column, select the Application Interface Width. The Application Interface Width
corresponds to the RIFFA parameter C_PCI_DATA_WIDTH.

The choice of Link Rate, Lanes, and Interface Width will set the frequency for the PCI inter-
face, which is clocked by the signal pld_clk. For the chosen settings, the frequency is determined
in the Chip User Guide (though, typically it is one of 62.5, 125, or 256 MHz)

40

MegaWizard Plug-In Manager - IP Compiler for PCI Express
IP Compiler for PCI Express

PCl Base Address Registers (Type 0 Configuration Space)

EBAR BAR Type BAR Size
0 32-bit Non-Prefetchable Memory 1 KByte - 10 bits
1 Select Type to Enable
2
3
4
5
EXP-ROM Select to Enable

- PCl Read-Only Registers

Device ID: [gx0004 Subsystem ID: ox0004 Revision ID:
vendor ID: |ox1172 Subsystem vendor ID: | 0x1172 Class code: |oxFFO000

Base and Limit Registers

InputfOutput: pisable ~ Prefetchable memory: jzzh= o

& Info: Native Endpeint implementation requires MSI message 64-bit address capsbility.
(& Info: Native Endpeint implementation doesn't support {0 or 32-bit Prefetchable memory BAR types.

| Cancel || = Back H Next = H Finish |

Figure 5.10: TP Compiler for PCI Express Registers Tab

PCI Registers Tab, shown in Figure 5.10, set BARO’s type to “32-bit non-prefetchable memory”.
Set the size to “1 KByte - 10 Bits”.

There are no required changes in the PCI Registers Tab. However, in a multiple FPGA system, it
may be useful to change the Device ID to identify different FPGA platforms. The other options,
specifically the Vendor ID, must remain the same.

41

MegaWizard Plug-In Manager - IP Compiler for PCI Express
IP Compiler for PCI Express

 Device Capabilities | | MSI Capabilities

- M51X Capabilities
Tags supported: MS| messages requested: [Implement MSIX

Implement completion timeout disable

MSI messag -bit address capable ~Table—
Completion timeout range: ABcD 8| [Link capabilities Table size: 0x000
- ¥ Link common clock Offset: TG
~Efror Reporting———————————————
Data link layer active reporting
[]implement advanced error reporting BAR indicator: -)
Surprise down reporting
Implement ECRC check
Link pert number: rPending Bit Array (PBA)——
Implement ECRC generation — Offset: 0
~Slot Capabilities
Implement ECRC forwarding Enable slot capability BAR indicator: o
Slot capability register: n.ononoooo
Parity :

& Info: Native Endpeint implementation requires MSI message 64-bit address capsbility.
(& Info: Native Endpeint implementation doesn't support {0 or 32-bit Prefetchable memory BAR types.

| Cancel || = Back H Next = H Finish |

Figure 5.11: TP Compiler for PCI Express Capabilities Tab

Open the Capabilities Tab shown in Figure 5.11. In the Device Capabilities box, set the Tags
Supported to 64. The log of the maximum number of tags supported is the RIFFA parameter
C_LOG_NUM_TAGS parameter in RIFFA. In the MSI Capabilities box, set the number of
MSI Messages Requested to 1. All the remaining settings must stay the same.

42

MegaWizard Plug-In Manager - IP Compiler for PCI Express
IP Compiler for PCI Express

- Rx Buffer Space Allocation (per VC)

Maximum payload size: Desired performance for received reguests: Maxirmum “
Number of virtual channels: Desired performance for received completions: =i v
rVirtual Channel Arbitration—————— | Posted header credit: 50 Used space: 200 Bytes
Number of low priority VCs: [jore w Posted data credit: 360 Used space: 5760 Bytes
~Retry Buffer Options Non-posted header credit: 54 Used space: 864 Bytes
P far siza Completion header credit: 112 Used space: 1752 Bytes
iy Lo iy s 16 kpytes s Completion data credit: 448 Used space: 7168 Bytes
T (B PR G b Total header credits: 216 Total Rx buffer space: 16 KByt...

& Info: Native Endpeint implementation requires MSI message 64-bit address capsbility.
(& Info: Native Endpeint implementation doesn't support {0 or 32-bit Prefetchable memory BAR types.

| Cancel || = Back H Next = H Finish |

Figure 5.12: TP Compiler for PCI Express Buffer Setup Tab

In Figure 5.12 select the Maximum Payload Size from the dropdown menu. Use this to set
the C_MAX PAYLOAD parameter. Set the numer of Virtual Channels to 1.

Note: Maximum Payload sizes are typically set by the BIOS, and 256 bytes seems to be
standard. RIFFA will default to the minimum of C_MAX PAYLOAD_SIZE and the setting
in your BIOS. Unless your BIOS is modified, or can support substantially larger packets, there
will be no performance benefit to increasing the payload size. Increasing the Maximum Payload
size will increase the resources consumed.

Next, we need to generate the PLL for the example design. Select the ALTPLL megafunction
from the Quartus IP Catalog, to open the window shown in Figure 5.13.

43

MegaWizard Plug-In Manager [page 1 of 17] x
L, e
_'na ALTPLL Documentation
Currently selected device family: Stratix IV -
ALTPLL50I50012502500
[Match project/default
linciko | . @
inckd) frequency: 50.000 MHz o Able to implement in Left_Right or Top_Bottom PLL
Operation Mode: Normal o7 - -
Clk | Ratio] Ph (dg)] DC (%))
wof vil ooo [=000 Tocked, o
el s2] 000 | s0.00
cz| sn] ooo | soo0
Which device speed grade will you be using? 2 -
Stratix v
Use millitary temperature range devices only
What is the frequency of the inclk0 input? 50.000 MHz
Set up PLL in LVDS mode Data rate: | Not Available w Mbps
PLL Type
Which PLL type will you be using?
() Left_Right PLL () Top_Bottom PLL © Select the PLL type automatically
‘Operation Mode
How will the PLL outputs be generated?
@ Use the feedback path inside the PLL
iCh In normal mode
(1 In source-svnchronous compensation Mode
(1 In zero delav butter mode
Connect the Tomimic Dort (bidirectionall
(1 WIm no compensation
(:) Create an ‘fbin' input for an external feedback {External Feedback Mode)
Which output clock will be compensated for? W -
Cancel |[<Back |[Next=][Fnisn ¥
AL o

Figure 5.13: ALTPLL General Settings Tab

In Figure 5.13, select the Speed Grade that matches your board (Found in the User Guide and
online). Next set the input clock frequency. The DE4 board provides 50 MHz clock inputs and

we use these for convenience. The remaining settings are unchaged. Click on the Inputs/Lock
tab to move on to Figure 5.14.

Optional: Set the name of the ALTPLL block. In the example designs we use the name ALT-
PLL50150012502500, for 50 MHz Input clock, 50, 125, and 250 MHz output clocks. The 125
and 50 MHz Clocks are required for the PCle Endpoint.

44

MegaWizard Plug-In Manager [page 2 of 17]
[
Zj ALTPLL =
Able to implement in Left_Right or Top_Bottom PLL.
ALTPLL50I50012502500
. Optional Inputs
F incki frequency: 50 000 MHz LN Create an "pllena’ input to selectively enable the PLL
Dperation Mode: Normal cl,
i [o] o e n(\:| Create an "areset’ input to asynchronously reset the PLL
cof U1} 000 | 50.00 ("] Create an ‘pfdena’ input to selectively enable the phaseffrequency detector
el s2] 000 | s0.00
cz| sn] ooo | soo0
Lock Qutput
Stratix v [E] Create 'locked' output
D Enable self-reset on loss lock
Advanced Parameters
Using these parameters is recommended for advanced users only
D Create output file(s) using the 'Advanced' PLL parameters
- Configurations with output clock(s) that use cascade counters are not supported
- Note: PLL type setting must be explicitly set to Top_Bottom' or ‘Left_Right' PLL
cancel | [<Back | [Next> [Finish
AL) »

Figure 5.14: ALTPLL Input Settings Tab

Match the settings shown in Figure 5.14. In the Output Clocks Section, create a 50 MHz output
clock, 125 MHz clock, and 250 MHz Clock. Click Finish when done.

Finally, we generate the ALTGX_RECONFIG Megafunction. Select the ALTGX_RECONFIG
megafunction from the Quartus IP Catalog to produce the widown shown in Figure 5.15.

45

MegaWizard Plug-In Manager [page 1 of 6]

'#) ALTGX_RECONFIG

-

[st][ocmentsion

a rate switch

Currently selected device family: | Stratix IV - ‘
ok Match project/default
[reconfg_romgbf53.0]| -
‘What is the number of channels controlled by the reconfig
controller? S | ST
Note : When the controller is used to drive multiple instances of the alt4gxb megafunction,
- The starting channel number of the instances must be unigue and a multiple of 4, and
- The number of channels controlled is one more than the last channel number.
‘What are the features to be reconfigured by the reconfig controller?
Reconfiguration mode ‘reconfig_mode_sel' :
[%] Offset cancellation for Receiver channels
Analog controls 000
] Data rate division in TX 011
D Channel and TX PLL select/reconfig
CMU PLL reconfiguration 100
. Channel and CMU PLL reconfiguration 101 A
Channel reconfiguration with TX PLL seled 110
. Central Control Unit Reconfiguration 111
D Adaptive Equalization control
;... Enable one time mode for a single chann{ 1001 -
1
1 alt_cal + 32 lut + 120 req| cancel | [<Back Mext > | [Finish *
a() m

Figure 5.15: ALTGX Reconfiguration Settings Tab

In the Reconfiguration Tab shown in Figure 5.15, set the Number of Channels. This should be
equal to the number of PCle Lanes at the Top Level. In the Features Section, Enable Analog

Controls. Match the settings in the remaining windows, shown in Figure 5.16,Figure 5.17, and
Figure 5.18.

46

MegaWizard Plug-In Manager [page 2 of 6]

-a ALTGX_RECONFIG

-

["] Use 'logical channel address' port for Analog controls reconfiguration

All the channels will be updated with the current value
«of control inputs when the write_all input is asserted.

Use the same control signal for all channels
The controller allows the dynamic reconfiguration andfor reading back of the following

analog settings through the use of dedicated control ports. You may select to use any of
these control ports by checking its corresponding checkbox.

Setting Write control Read control

Voltage Output Differential (VOD) (] tx_vodctrl [tx_vodctrl_out
Pre-emphasis control pre-tap (] bx_preemp_0t | [[] bx_preemp_0t_out
Pre-emphasis control 1st post-tap : tx_preemp_lt I:I tx_preemp_lt out
Pre-emphasis control 2nd post-tap tx_preemp_2t |:| tx_preemp_2t out
Equalizer DC gain : rx_eqdcgain I:I rx_egdcgain_out
Equalizer control] rx_eqctrl] mx_eqctrl_out

1 alt_cal + 32 lut + 120 reg|

Cancel || <Back || Next> || Fnish

4

Figure 5.16: ALTGX Reconfiguration Analog Settings Tab

47

MegaWizard Plug-In Manager [page 3 of 6]

%) ALTGX_RECONFIG =3

‘Channel reconfiguration is performed on a per channel basis. The channel to be
reconfigured is specifiedby the value of logical_channel_addres port

(] Enable continuous write of all the words needed for reconfiguration

All the words needed for reconfiguration are written in individual write cycles

‘What is the read latency of the MIF contents? clock cycles

[®] Use 'reconfig_address_out'

The reconfig_address_out port indicates the address used in the write cycle
[[J use 'reconfig_address_en'

The reconfig_address_en port indicates that the address to be used in the write cycle
has changed

(] use 'reset_reconfig_address

Asserting the reset_reconfig_address port resets the address counter and restarts the
channel reconfiguration

\:\ Use 'reconfig_address' port to input address from MIF in reduced MIF reconfiguration

["] use 'reconfig_reset'

Asserting the ‘reconfig_reset’ port resets all the reconfiguration processes

| Cancel || < Back || Next > || Finish |

Figure 5.17: ALTGX Reconfiguration Channel Tab

MegaWizard Plug-In Manager [page 3 of 6] x

J’a ALTGX_RECONFIG

nel and TX PLL r

ALTGXPCleGen2x8 Error check

dlic [] Enable illegal mode checking

|reconfig_frommxb[33.0) |

‘When illegal mode check is enabled. the controller will check for illegal inputs and
recover from them. The output port 'error’ will be driven high when illegal inputs are
specified.

[] Enable self recovery

‘When self recovery is enabled. the controller will automatically recover and quit an
‘operation if the operation did not complete within the expected time. The output port
‘error’ will be driven high whenever self recovery happens.

[Use 'rx_tx_duplex_sel’ port to enable RX only, TX only or duplex reconfiguration

A value of "00' on 'rx_tx_duplex_sel’ reads/writes both RX and TX settings, '01' RX
settings only and '10" TX settings only

1 alt_cal + 32 lut + 120 reg Cancel || <Back || Next = || Fnish

aC

Figure 5.18: ALTGX Reconfiguration Error Tab

48

5.2.2 Creating Constraints files for IP Compiler Designs

Advanced users may also want to edit and modify the constraint files. This not required or
recommended for novice users. The example designs in the RIFFA 2.2.2 distribution contain
appropriate constraint files for the example designs. However if the need arises, we demonstrate
the constraints we used below.

If the goal is to generate a RIFFA design completely from scratch, each board directory comes
with a RIFFA wrapper verilog file and instantiates a vendor-specific translation layer. It is highly
recommended to re-use these files RIFFA wrapper when creating designs from scratch. Users
should also use the constraints file (.sdc) in the board directory, and in the constr/, or read the
User Guide provided with each board.

To appropriately constrain your PCle reference clocks, place the constraints shown in Listing 5.4
in your .sdc file. Modify the name of the osc_.50MHz and PCIE_REFCLK ports to match your
design

Listing 5.4: .sdc constraints for Qsys and Megawizard designs

create_clock -name PCIE_REFCLK -period 10.000 [get_ports {PCIE_REFCLK}]
create_clock -name osc_50MHz -period 20.000 [get_ports {0SC_BANK3D_50MHZ}]
derive_pll_clocks -create_base_clocks
derive_clock_uncertainty
50 MHZ PLL Clock
create_generated_clock -name clk50 -source [get_ports {0SC_50_BANK2}] \
[get_nets {*|altpll_component|auto_generated|wire_plll_clk[0]}]
125 MHZ PLL Clock
create_generated_clock -name clk125 -multiply_by 5 -divide_by 2 -source \
[get_ports {0SC_50_BANK2}] \
[get_nets {*|altpll_component|auto_generated|wire_pll1l_clk[1]}]
250 MHZ PLL Clock
create_generated_clock -name clk250 -multiply_by 5 \
-source [get_ports {0SC_50_BANK2}] [get_nets \
{*|altpll_component |auto_generated|wire_plll_clk [2]}]

Likewise, copy the constraints in Listing 5.5 into your .gsf file. Copy the location assignment
commands for each PCle Pin in your reference design.

Listing 5.5: .qsf settings for IP Compiler Designs

HARHBRABHBARHBRARB AR A B AR BB BABHBRB R B AR H B AR BB AR A HBRBHBARHBRR R B AR HBRRRH

PCIE Connections
HARHBRBHBARBHBRARBAAABAARBBARHBRARBARABRARBEAAHBRRBBARHBRARB AR HBRARH
set_location_assignment <PCIE_REFCLK_PIN> -to PCIE_REFCLK
set_instance_assignment -name IO_STANDARD HCSL -to PCIE_REFCLK
set_location_assignment <PCIE_REFCLK_PIN(n)> -to ¢‘PCIE_REFCLK(mn)’’
set_instance_assignment -name IO_STANDARD HCSL -to ¢‘PCIE_REFCLK(n)’’
set_location_assignment <PCIE_RESET_N> -to PCIE_RESET_N
set_instance_assignment -name IO_STANDARD €¢2.5 V’’ -to PCIE_RESET_N

For each PCIE Lane (L) set the pin locations from the board user guide!
HARHBRBHBARBHBRARBARHBRARBBAAHBARBBARHBRBRBARA B AR BRARHBRRHBARHBRAHBERH
#PCIE TX_0UT L
HARARRRARAAARRRHHH AR R H B BB BB AR AR RRRARRRRHH BB R R R BB B BB R AR RRRRR RS HH
set_location_assignment <TX_LANE[L]_PIN> -to PCIE_TX_OUTI[L]
set_location_assignment <TX_LANE[L]_PIN(n)> -to ‘‘PCIE_TX_OUT([L](n)’’
HARHBRBHBABHBRARBAAABAARHBARHBRBRBARHBRAR B AR B HARBHBARHBRARBERHBRARH
#PCIE RX_IN L

HARHBRAHBARBHBRARB AR BRARBBARHBRBRBARABRARBEAAHBRRBBARHBRARB AR BRARH
set_location_assignment <RX_LANE[L]_PIN> -to PCIE_RX_IN[L]
set_location_assignment <RX_LANE[L]_PIN(n)> -to ¢‘PCIE_RX_IN[L](mn)?’’

49

6 Developer Documentation

This chapter describes RIFFA 2.2.2 at a level of detail that is useful for RIFFA developers. Users
of RIFFA should not read this section until they are comfortable developing for RIFFA or have
experience with PCle and DMA concepts.

6.1 Architecture Description

User Applicati

Tx Complation Interface ‘ T Roquest Interface

X Engine TR Formatter

aeee | e e

e

Figure 6.1: High level RIFFA Diagram

51

e IP Interfaces The Vendor IP interfaces provied low-level access to the PCle bus. Each
vendor provides a set of signals for communicating over PCle. Xilinx FPGAs without PCle
Gen3 support provide an interface very similar to Altera FPGAs. We call this the “Classic
Interface”. Newer Xilinx devices with PCle Gen3 support have completely different non-
compatible interfaces (CC, CQ, RC, RQ instead of RX and TX). We call this the “Xilinx
Ultrascale Interface”.

Files: *.xci, *.qsys (And others generated by vendor tools)

° The Translation Layer provides a set of vendor-independent interfaces
and signal names.

There is one translation layer for each interface. The “Classic Translation Layer” provides
a set of interfaces (RX, TX, Interrupt, and Configuration) and vendor independent signal
names to higher layers. There is very little logic in these layers, and there should be no
timing-critical logic here.

The “Ultrascale Translation Layer” operates on the ultrascale interface. Similar to the clas-
sic translation layer, it contains very little logic. It provides the interfaces: RX Completion,
RX Request, TX Completion, TX Request, Interrupt, and Configuration.

Files: translation_altera.v, translation_zilinz.v, trc_engine_ultrascale.v,
trr_engine_ultrascale.v

) The Formatting Engine Layer is responsible for formatting
requests and completions into packets. This layer provides four interfaces: RX Completion
(RXC) for receiving completions (responses to memory read requests), RX Request (RXR)
for receiving memory read and write requests, TX Completion (TXC) for transmitting
completions (reponses to memory read requests), and TX Request (TXR) for transmitting
read and write requests.

The engine layer abstracts vendor specific features, such as Xilinx’s Classic-Interface Big-
Endian requirement and Altera’s Quad-word Alignment. The C_VENDOR, parameter for
the engine layer switches between Xilinx, Altera, and Ultrascale logic to produce TLPs
(Classic Interface) and AXI Descriptors (Ultrascale Interface).

The RX path of the engine layer has packet parsers for TLPs and AXI Descriptors. These
are parameterized by width, as of RIFFA 2.2. The TX Path of the engine layer has packet
formatters for TLPs and AXI Descriptors.

As alluded to in the Translation Layer, the Classic IP Cores provide only two transmit
interfaces (RX, and TX), while the Xilinx Ultrascale IP Core handles RX Demultiplexing
and multiplexing internally and provides four interfaces (RXC, RXR, TXC, and TXR). For
this reason, the multiplexing/FIFO logic used in the Classic interfaces are not necessary for
the Xilinx interface.

After the Engine-Layer, higher layers should be vendor agnostic, if not bus agnostic. The
exception will be sideband signals signals. (How much of this ideal can be achieved remains
to be seen)

Note: The engine layer currently uses word-aligned addresses, and byte-enable signals to
specify sub-word addresses. In the future, all addresses will be byte-aligned and word enables
will be handled in the formatting logic.

Files: engine_layer.v, schedules.vh, rx_engine_classic.v, rxc_engine_classic.v,
rer_engine_classic.v, tx_engine_classic.v, txc_engine_classic.v,
tzr_engine_classic.v, rr_engine_ultrascale.v, rxc_engine_ultrascale.v,

52

rer_engine_ultrascale.v, tr_engine_ultrascale.v, txc_engine_ultrascale.v,
txr_engine_ultrascale.v

° The Scatter Gather DMA Layer handles reading
from and writing to scatter gather lists and providing the addresses found in these lists to

the data-request logic in the Data Abstraction layer. In RIFFA, each channel has its own
SG DMA list logic.

The Completion Merge/Reorder buffer handles out-of-order completions. In the PCle spec-
ification, a memory request can be serviced by multiple smaller completions (the responses
must remain in order). Completions from different memory requests can be returned in any
order. The reorder buffer releases data when all of the responses to a memory request have
been received.

Memory read and write requests to the host are multiplexed by the TX Request Mux. These
are serviced fairly in round robin order.

The Scatter Gather List Readers issue read requests to read data from the Scatter Gather
List (SGL) created by the driver. This list contains the address and length of pages con-
taining data to transmit. When an SGL has been exhausted, an interrupt is raised and the
SGL is refilled or the transaction is comlete.

Each element in the SGL 128-bit triple: 32’b0, 32’b Length of Data in 32-bit words, 64’b
Address of Page. The addresses in this list are provided to the DMA Data Read Engine
in the Data Abstraction layer. Since the SGL must be a single continuous stream of 128-
bit elements regardless of the size of the interface, gaps and mis-alignments due to packet
formatting are removed using the Data Packer, which receives its data from the reorder
buffer.

The location of the SGL in host memory is written to the BAR Memory space. The BAR
Memory space is partitioned among the channels. Only the host can issue read and write
requests to this memory space. Since the memory space is partitioned, the RX Request
interface and TX Completion interface do not have demultiplexing or multiplexing logic.

A more through treatment of the SG DMA Layer can be found in Sec. 6.1.1.

Files: reorder_queue*.v, sg_list_reader_*.v, sg_list_requester.v
fifo_packer_*.v, registers.v, tr_multiplexer_*.v

e Data Abstraction / DMA Layer The Data Abstraction / DMA Layer is responsible for
making requests to read data from, or write data to host memory.

The read and write addresses are provided by the Scatter Gather list readers. Since RIFFA
provides a single continuous stream of 32-bit words regardless of the size of the interface,
gaps and mis-alignments due to packet formatting are removed using the Data Packer, which
receives its data from the reorder buffer. On the TX side, this is not necessary. However a
write buffer, and other transaction tracking logic is necessary for buffering, and removing
non-integral data.

A more through treatment of the Data Abstraction Layer can be found in Sec. 6.1.2.

Files: reorder_queue*.v, rz_port_*.v, rrz_port_reader.v,

fifo_packer_*.v, tx_port_writer.v tx_port_buffer_*.v txz_port_monitor_*.v
e Channel Interface Files: rx_channel_gate_*.v, tx_channel_gate_*.v

e User lLogle

53

6.1.1 Scatter Gather DMA Layer

READS from the SG lists are prioritized

6.1.2 Data Abstraction DMA Layer

6.2 Software Description

6.3 FPGA RX Transfer / Host Send

Parameter Value

Data Transfer Length 128 (32-bit words)
Data Transfer Offsfet 0

Data Transfer Last 1

Data Transfer Channel 0

Data Page Address (DMA) | 0x00000000_-FEED0000
SGL Head Address 0x00000000_BEEF0000

A user makes an call to fpga_send() to transfer 128 32-bit words of data on Channel 0.

The RIFFA driver writes {32'd128} to Channel 0’s RX Length register, and {31°d0,1’b1}
to Channel 0’s RX OffLast register. This notifies the FPGA that a new transfer is hap-
pening and will raise CHNL_RX for the user application. Files: rzr_engine_*.v, registers.v,
channel*.v, rz_port.v rz_port_gate.v, rx_port_reader.v

The RIFFA driver allocates an SGL with 1 element (4 32-bit words) at address
{64’h0000-0000_.BEEF _0000}. The driver fills the list with the length and address of the
user data:

{32’d0,32’d128,64’h0000-0000_.FEED_0000}.

The RIFFA driver communicates the address and length of the SGL by writing
{32’hBEEF0000} to to Channel 0’'s RX SGL Address Low register, {32'd0} to to Channel
0’s RX SGL Address High register, and {32’d4} to to Channel 0’s RX SGL Length register.
Writing the RX SGL Length register notifies the RX SG Engine that a transfer has started,
and the low and high portions of the 64-bit RX SGL Address are valid. Files: rzr_engine_*.v,
registers.v, channel®.v, ro_port.v, sq_list_requester.v

The SG List Requester on the FPGA issues a read request for 4 32-bit words of data starting
at address 0xBEEF0000. The FPGA also issues an interrupt. The RIFFA driver reads the
Interrupt Status Register of the FPGA and determines that Channel 0 has finished read-
ing the RX SGL. Files: sg_list_requester.v, rr_port_requester_muz.v, rz_port_*.v, channel*.v,
tr_multiplexer.v, engine_layer.v, txr_engine_*.v, interrupt.v

The FPGA receieves a completion with 4 32-bit words. After being enqueued in the reorder
buffer, the completion is delivered to Channel 0, and packed into the SGL RX Fifo. Files:
rec_engine_*.v, engine_layer.v, reorder_queue*.v, fifo_packer_*.v

The RX Port Reader removes the SG element from the FIFO, and issues several read
requests to receive all 128 32-bit words. Files: rx_port_reader.v, rz_port_*.v, channel*.v,
tr_multiplexer.v, engine_layer.v, tzr_engine_*.v, tr_multiplezer.v

The completions return interleaved and are reordered in the reorder buffer. The reorder
buffer releases the completions in order to the fifo packer, which puts them in the FIFO.
The RX Port Channel Gate issues the data to the user. Files: rzc_engine_*.v, engine_layer.v,
reorder_queue*.v, fifo_packer_*.v, rz_port_reader.v, rr_port_channel_gate.v, channel*.v

54

e The FPGA raises an interrupt with the last word of data is put into the Main Data Fifo.
The RIFFA driver reads the Interrupt Status Register of the FPGA and determines that
Channel 0 has finished the RX Transaction. The RIFFA driver reads the RX Words Read
register to determine how many words were read during the transaction.

e Control is returned to the user.

6.4 TX Transfer
6.5 FPGA RX Transfer / Host Send

Parameter Value

Data Transfer Length 128 (32-bit words)
Data Transfer Offsfet 0

Data Transfer Last 1

Data Transfer Channel 0

Data Page Address (DMA) | 0x00000000_-FEED0000
SGL Head Address 0x00000000_BEEF0000

e A user makes an call to fpga_recv() to transfer 128 32-bit words of data from Channel 0.

e The RIFFA driver allocates an SGL with 1 element (4 32-bit words) at address
{64’h0000-0000.BEEF _0000}. The driver fills the list with the length and address of the
user data: {32'd0,32’d128,64’h0000-0000_FEED_0000}.

e The user application independently raises CHNL_TX and starts writing data to
CHNL_TX_DATA. RIFFA core logic reads transaction parameters from CHNL_TX_OFF,
CHNL_TX_LAST, and CHNL_TX_LEN and acknowledges them with CHNL_TX_ACK.
Files: tx_port_channel_gate.v

e An interrupt is raised by the FPGA. The RIFFA driver reads the Interrupt Status Register
of the FPGA and determines that Channel 0 wishes to start a new TX Transaction. The
driver ISR reads {32’d128} from Channel 0’s TX Length register, and {31’d0, 1’b1} from
Channel 0’s TX OffLast register. Reading the OffLast register notifies the FPGA that
the new transfer has been accepted. Files: rzr_engine_*.v, riffa.v, registers.v, channel*.v,
tr_port_*.v, tr_port_writer.v, tx_port_monitor_*.v, engine_layer.v, trzc_engine_*.v

e The RIFFA driver communicates the address and length of the SGL by writing
{32’hBEEF_0000} to to Channel 0’s TX SGL Address Low register, {32’d0} to to Channel
0’s TX SGL Address High register, and {32’d4} to to Channel 0’s TX SGL Length register.
Writing the TX SGL Length register notifies the TX SG Engine that a transfer has started,
and the low and high portions of the 64-bit TX SGL Address are valid. Files: rzr_engine_*.v,
registers.v, channel*.v, rr_port.v, sq_list_requester.v

e The SG List Requester on the FPGA issues a read request for 4 32-bit words of data start-
ing at address 0xBEEF(0000. The FPGA raises an interrupt. The RIFFA driver reads the
Interrupt Status Register of the FPGA and determines that Channel 0 has finished read-
ing the TX SGL. Files: sg_list_requester.v, rr_port_requester_muz.v, rx_port_*.v, channel*.v,
tr_multiplexer.v, engine_layer.v, txr_engine_*.v, interrupt.v

e The FPGA receieves a completion with 4 32-bit words. After being enqueued in the reorder
buffer, the completion is delivered to Channel 0, and packed into the SGL TX Fifo. Files:
rzc_engine_*.v, engine_layer.v, reorder_queue*.v, fifo_packer_*.v

55

e The TX Port Writer removes the SG element from the FIFO, and issues several write
requests to write all 128 32-bit words. Files: tz_port_-monitor.v, tx_port_writer.v, tr_port_*.v,
channel*.v, tr_multiplezer.v, engine_layer.v, txr_engine_*.v, tz_multiplexer.v

e When the last write transaction has been accepted by the core, the FPGA raises an interrupt.
The RIFFA driver reads the Interrupt Status Register of the FPGA and determines that
Channel 0 has finished writing data. The RIFFA driver reads the TX Words Written
register to determine how many words were written during the transaction (in case of early
termination, or overflow). Files: rar_engine_*.v, riffa.v, interrupt.v, registers.v, channel*.v,
tz_port_*.v, tz_port_writer.v, engine_layer.v, txc_engine_*.v

e Control is return to the user because the TX_LAST signal was set to 1.

56

