
RIFFA 2.2.0 Documentation

Dustin Richmond, Matt Jacobsen

Tuesday 14th July, 2015

Contents

1 Introduction: RIFFA 3

1.1 What is RIFFA . 3

1.2 Licensing . 4

2 Getting Started 5

2.1 Development Board Support in RIFFA 2.2.0 . 5

2.2 Understanding this User Guide . 5

2.3 Decoding What’s Provided . 5

2.4 Release Notes . 8

2.4.1 Version 2.2.0 . 8

2.4.2 Version 2.1.0 . 8

2.4.3 Version 2.0.2 . 8

2.4.4 Version 2.0.1 . 9

2.5 Errata . 9

2.5.1 Windows . 10

2.5.2 Linux . 10

2.5.3 Altera . 10

2.5.4 Xilinx (Classic) . 10

2.5.5 Xilinx (Ultrascale) . 10

3 Installing the RIFFA driver 11

3.1 Linux . 11

3.2 Windows . 12

4 Compiling and using the Xilinx Example Designs 13

4.1 Classic - 7 Series Integrated Block for PCI Express - (VC707, ZC706 and older) . . 13

4.1.1 VC707 and ZC706 Example Designs . 13

4.1.2 Generating the 7 Series Integrated Block for PCI Express 14

4.1.3 Creating Constraints files for the VC707 Development Board 20

4.1.4 Creating Constraints files for the ZC706 Development Board 20

4.2 Ultrascale - Gen3 Integrated Block for PCI Express - (VC709 and newer) 21

4.2.1 VC709 Example Designs . 21

4.2.2 Generating the Gen3 Integrated Block for PCI Express 21

4.2.3 Creating Constraints files for the VC709 Development Board 27

5 Compiling and using the Altera Example Designs 28

5.1 Example Designs with Qsys and MegaWizard (Stratix V, Cyclone V and newer) . 28

5.1.1 Qsys (Stratix V and newer) . 28

5.1.2 Generating IP using MegaWizard (Stratix V, Cyclone V and newer) 29

5.1.3 Creating Constraints files for MegaWizard and QSys Designs 37

5.2 IP Compiler for PCI Express (Stratix IV, and older) 38

5.2.1 Generating IP with IP Compiler for PCI Express (Stratix IV, and older) . . 38

5.2.2 Creating Constraints files for IP Compiler Designs 48

6 Developer Documentation 49

6.1 Architecture Description . 50

6.1.1 Scatter Gather DMA Layer . 53

6.1.2 Data Abstraction DMA Layer . 53

6.2 Software Description . 53

6.3 FPGA RX Transfer / Host Send . 53

6.4 TX Transfer . 54

6.5 FPGA RX Transfer / Host Send . 54

2

1 Introduction: RIFFA

1.1 What is RIFFA

RIFFA (Reusable Integration Framework for FPGA Accelerators) is a simple framework for com-
municating data from a host CPU to a FPGA via a PCI Express bus. The framework requires
a PCIe enabled workstation and a FPGA on a board with a PCIe connector. RIFFA supports
Windows and Linux, Altera and Xilinx, with bindings in C/C++, Python, MATLAB and Java.

On the software side there are two main functions: data send and data receive. These functions are
exposed via user libraries in C/C++, Python, MATLAB, and Java. The driver supports multiple
FPGAs (up to 5) per system. The software bindings work on Linux and Windows operating
systems. Users can communicate with FPGA IP cores by writing only a few lines of code.

On the hardware side, users access an interface with independent transmit and receive signals.
The signals provide transaction handshaking and a first word fall through FIFO interface for
reading/writing data to the host. No knowledge of bus addresses, buffer sizes, or PCIe packet
formats is required. Simply send data on a FIFO interface and receive data on a FIFO interface.
RIFFA does not rely on a PCIe Bridge and therefore is not subject to the limitations of a bridge
implementation. Instead, RIFFA works directly with the PCIe Endpoint and can run fast enough
to saturate the PCIe link.

RIFFA communicates data using direct memory access (DMA) transfers and interrupt signaling.
This achieves high bandwidth over the PCIe link. In our tests we are able to saturate (or near
saturate) the link in all our tests. The RIFFA distribution contains examples and guides for
setting up designs on several standard development boards.

Figure 1.1: Graph of Bandwidth vs Transfer Size

RIFFA 2.2.0 is significantly more efficient than its predecesor RIFFA 1.0. RIFFA 2.2.0 is able
to saturate the PCIe link for nearly all link configurations supported. Figure 1.1 shows the
performance of designs using the 32 bit, 64 bit, and 128 bit interfaces. The colored bands show
the bandwidth region between the theoretical maximum and the maximum achievable. PCIe Gen
1 and 2 use 8 bit / 10 bit encoding which limits the maximum achievable bandwidth to 80% of
the theoretical. Our experiments show that RIFFA can achieve 80% of the theoretical bandwidth
in nearly all cases. The 128 bit interface achieves 76% of the theoretical maximum.

If you are using RIFFA on a new platform not listed above let us know and well help you out!

1.2 Licensing

This software is Copyright 2015 The Regents of the University of California. All Rights Reserved.

Permission to copy, modify, and distribute this software and its documentation for educational,
research and non-profit purposes, without fee, and without a written agreement is hereby granted,
provided that the above copyright notice, this paragraph and the following three paragraphs
appear in all copies.

Permission to make commercial use of this software may be obtained by contacting:

Technology Transfer Office
9500 Gilman Drive, Mail Code 0910
University of California
La Jolla, CA 92093-0910
(858) 534-5815
invent@ucsd.edu

This software program and documentation are copyrighted by The Regents of the University of
California. The software program and documentation are supplied “as is”, without any accom-
panying services from The Regents. The Regents does not warrant that the operation of the
program will be uninterrupted or error-free. The end-user understands that the program was
developed for research purposes and is advised not to rely exclusively on the program for any
reason.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND
ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF CALIFORNIA
SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN “AS IS” BASIS,
AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAIN-
TENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

4

2 Getting Started

2.1 Development Board Support in RIFFA 2.2.0

RIFFA 2.2.0 supports:

• The VC707, ZC706 and similar boards with the Xilinx IP Core 7-Series Integrated Block
for PCI Express. Example designs for the VC707 and ZC706 boards are provided, and
contain this core. The current distribution supports all 64-bit interfaces for these devices,
with 128-bit support coming soon after the initial release. (Support for the 128-bit interface
is in RIFFA 2.1, but is temporarily mising due to changes)

• The VC709 board and similar boards with the Xilinx IP Gen3 Integrated Block for PCI
Express. Example designs for the VC709 are provided, and contain this core. The current
distribution supports all 64-bit and 128-bit AXI interfaces. 256-bit (PCIe Gen3 x8) support
is planned for a later date.

• The DE5-Net board and similar boards with the Stratix V, Cyclone V, and Arria V, Hard IP
for PCI express (Avalon Streaming Interface). Example designs for the DE5-net board are
provided, and contain the Stratix V version of this core. The current distribution supports
all 64-bit and 128-bit Avalon Streaming interfaces.

• The DE4 and similar boards with the IP Compiler for PCI Express Core, supporting Stratix
IV, Cyclone IV and Arria II devices. Example designs for the DE4 board are provided. The
current distribution supports all 64-bit and 128-bit Avalon Streaming interfaces.

2.2 Understanding this User Guide

In this user guide, we use the following conventions:

Object Example
Directories and Paths RIFFA 2.2.0/source/fpga/riffa
Xilinx Specific Content vc709
Altera Specific Content de5
Configuration Setting Number of Lanes
Terminal Command, Code Snippet $ echo ‘‘Hello World’’

RIFFA Parameter C NUM CHNL

2.3 Decoding What’s Provided

Fig 2.1 shows the directory hierarchy of RIFFA. This instruction manual uses this directory tree
when specifying all directory paths.

The RIFFA 2.2.0/source/fpga/ contains a directory for each board we have tested for the current
distribution:de5, de4, VC709, VC707, ZC706. Each board directory has several example project
directories (e.g. DE5Gen1x8If64 and VC709 Gen1x8If64). Each example project directory has 5
sub-directories:

• prj/ contains all of the project files (.qsf,.qpf, .xpr).

• ip/ contains all of the ip files (.qsys, .xci) generated for the project, when permitted by
licensing agreements.

• bit/ contains the example programming file for the corresponding FPGA example design.
Quartus and Vivado do not modify this programming (.sof, .bit).

• constr/ contains the user constraint files (.sdc, .xdc).

• hdl/ contains any example-project specific Verilog files, such as the project top level file.

6

RIFFA 2.2.0

Documentation

RIFFA User Guide.pdf (This Document)

install

windows

setup.exe

setup debug.exe

linux

README.txt

source

c c++

java

matlab

python

driver

linux

makefile

... (Other source files)

windows

... (Other source files & directories)

fpga

riffa

(RIFFA Source)

de5

DE5Gen1x8If64

prj

bit

ip

constr

hdl

... (Other example projects)

de4

DE4Gen1x8If64
...

vc709

VC709 Gen1x8If64
...

zc706

ZC706 Gen1x8If64
...

vc707

VC707 Gen1x8If64
...

Figure 2.1: Directory hierarchy of the RIFFA 2.2.0 distribution

7

2.4 Release Notes

2.4.1 Version 2.2.0

• Added: Support for the new Gen3 Integrated Block for PCIe Express, and the VC709
Development board.

• Added: ZC706 Example Designs

• Changed: Xilinx example project packaging. All Xilinx Virtex 7 projects are now click-to-
compile, and come with instantiated IP.

• Re-wrote and refactored: Various parts of the TX and RX engines to maximize code reuse
between different vendors and PCIe endpoint implementations

• Fixed: A bug in the Linux Driver that prevented compilation on older kernels

• Fixed: A bug in the Windows Driver that prevented repeated small transfers.

2.4.2 Version 2.1.0

• Added reorder queue and updated many rx/tx engine and channel modules that use it.

• Added parameters for number of tags to use and max payload length for sizing RAM for
reorder queue.

• Fixed: Bug in the riffa driver.c, too few circular buffer elements.

• Fixed: Bug in the riffa driver.c, bad order in which interrupt vector bits were processed.
Can cause deadlock in heavy use situations.

• Fixed: Bug in the tx port writer.v, maxlen did not start with a value of 1. Can cause
deadlock behavior on second transfer.

• Fixed: Bug in the rx port reader.v, added delay to allow FIFO flush to propagate.

• Fixed: Bug in rx port xxx.v, changed to use FWFT FIFO instead of existing logic that
could cause CHNL RX DATA VALID to drop for a cycle after CHNL RX dropped even
when there is still data in the FIFO. Can cause premature transmission termination.

• Changed rx port channel gate.v to use FWFT FIFO.

• Removed unused signal from rx port requester mux.v.

• Fixed: Typo/bug that would attempt to change state within tx port monitor xxx.v.

• Added flow control for receive credits to avoid over driving upstream transactions (applies
to Altera devices).

2.4.3 Version 2.0.2

• Fixed: Bug in Windows and Linux drivers that could report data sent/received before such
data was confirmed.

• Fixed: Updated common functions to avoid assigning input values.

• Fixed: FIFO overflow error causing data corruption in tx engine upper and breaking the
Xilinx Endpoint.

• Fixed: Missing default cases in rx port reader, sg list requester, tx engine upper, and tx port writer.

8

• Fixed: Bug in tx engine lower 128 corrupting s axis tx tkeep, causing Xilinx PCIe endpoint
core to shut down.

• Fixed: Bug in tx engine upper 128 causing incomplete TX data timeouts.

• Changed rx engine to not block on nonposted TLPs. They’re added to a FIFO and serviced
in order.

• Reset rx port FIFOs before a receive transaction to avoid data corruption from replayed
TLPs.

2.4.4 Version 2.0.1

• RIFFA 2.0.1 is a general release. This means we’ve tested it in a number of ways. Please
let us know if you encounter a bug.

• Neither the HDL nor the drivers from RIFFA 2.0.1 are backwards compatible with the
components of any previous release of RIFFA.

• RIFFA 2.0.1 consumes more resources than 2.0 beta. This is because 2.0.1 was rewritten
to support scatter gather DMA, higher bandwidth, and appreciably more signal registering.
The additional registering was included to help meet timing constraints.

• The Windows driver is supported on Windows 7 32/64. Other Windows versions can be
supported. The driver simply needs to be built for that target.

• Debugging on Windows is difficult because there exists no system log file. Driver log mes-
sages are visible only to an attached kernel debugger. So to see any messages you’ll need the
Windows Development Kit debugger (WinDbg) or a small utility called DbgView. DbgView
is a standalone kernel debug viewer that

• http://technet.microsoft.com/ens/sysinternals/bb896647.aspx Run DbgView with admin-
istrator privileges and be sure to enable the following capture options: Capture Kernel,
Capture Events, and Capture Verbose Kernel Output.

• The Linux driver is supported on kernel version 2.6.27+.

• The Java bindings make use of a native library (in order to connect Java JNI to the native
library). Libraries for Linux and Windows for both 32/64 bit platforms have been compiled
and included in the riffa.jar.

• Removed the CHNL RX ERR signal from the channel interface. Error handling now ends
the transaction gracefully. Errors can be easily detected by comparing the number of words
received to the CHNL RX LEN amount. An error will cause CHNL RX will go low prema-
turely and not provide the advertised amount of data.

• Fixed: Bug in sg list requester which could cause an unbounded TLP request.

• Fixed: Bug in tx port buffer 128 which could stall the TX transaction.

2.5 Errata

While we have extensively tested the current distribution, we are human and cannot eliminate all
bugs in our distribution. As a general rule of thumb, if you find yourself delving into the RIFFA
code, you have gone too far. Contact us if you need additional assistance!

See the following notes for issues we are currently tracking:

9

2.5.1 Windows

2.5.2 Linux

No open issues

2.5.3 Altera

Issue 1: Inexplicable DE4 behavior We are seeing inexplicable behavior on the DE4 boards.
In particular, this affects both upstream and downstream data transfers on the Gen2 128-bit
interface. In the channel tester, this problem manifests as an incorrect number of words recieved,
and incorrrect data sent.

Issue 2: DE4 Designs intermittently fail timing Particularly on the 128-bit interface.
Working to fix.

Issue 3: No support for the 256-bit, Gen3x8 Interface Coming soon...

2.5.4 Xilinx (Classic)

Issue 1: Missing example designs for ML605 There is no disadvantage to using RIFFA
2.1.0 until we return support in a future distribution.

Issue 2: Missing example design for Spartan 6 LXT Development board The 32-bit
interface support has been removed from RIFFA 2.2 and may be added back in the future. Please
use RIFFA 2.1 in the meantime

2.5.5 Xilinx (Ultrascale)

Issue 1: No support for the 256-bit, Gen3x8 Interface Coming soon...

10

3 Installing the RIFFA driver

3.1 Linux

To install the RIFFA driver in linux, you must build it against your installed version of the Linux
kernel. RIFFA 2.2.0 comes with a makefile that will install the necessar linux kernel headers and
the driver. This makefile will also build and install the C/C++ native library. To install RIFFA
2.2.0 in linux, follow these instructions:

1. Open a terminal in linux and navigate to the RIFFA 2.2.0/source/driver/linux directory.

2. Ensure you have the kernel headers installed, run:

$ sudo make setup

This will attempt to install the kernel headers using your system’s package manager. You
can skip this step if you’ve already installed the kernel headers.

3. Compile the driver and C/C++ library:

$ make

or

$ make debug

Using make debug will compile in code to output debug messages to the system log at
runtime. These messages are useful when developing your design. However they pollute
your system log and incur some overhead. So you may want to install the non-debug
version after you’ve completed development.

4. Install the driver and library:

$ sudo make install

The system will be configured to load the driver at boot time. The C/C++ library will be
installed in the default library path. The header files will be placed in the default include
path. You will need to reboot after you’ve installed for the driver to be (re)loaded.

5. If the driver is installed and there is a RIFFA 2.2.0 configured FPGA when the computer
boots, the driver will detect it. Output in the system log will provide additional information.

6. The C/C++ code must include the riffa.h header. An example inclusion is shown in List-
ing 3.1

7. When compiling (using GCC/G++, etc.) you must link with the RIFFA libraries using the
-lriffa flag. For example, when compiling test.c from Listing 3.1:

$ gcc -g -c -lriffa -o test.o test.c

8. Bindings for other languages can be installed by following the README files in their re-
spective directories (See Figure 2.1

3.2 Windows

Currently only Windows 7 (32/64) is supported by RIFFA 2.2.0. In the RIFFA 2.2.0/install/win-
dows/ subdirectory use the provided setup.exe program to install the RIFFA driver and native
C/C++ library. You can verify that RIFFA 2.2.0 installed correctly by checking the installation
directory in Program Files. After installation, you’ll be able to install the bindings for other
languages.

The setup dbg.exe installer installs a driver with additional debugging output. You can install
the setup dbg.exe version and then later use setup.exe to install the non-debug output version.

Listing 3.1: Inclusion of the RIFFA header files in a user application

#include <stdio.h>

#include <stdlib.h>

#include <riffa.h>

#define BUF_SIZE (1*1024*1024)

unsigned int buf[BUF_SIZE];

int main(int argc , char* argv []) {

fpga_t * fpga;

int fid = 0; // FPGA id

int channel = 0; // FPGA channel

fpga = fpga_open(fid);

fpga_send(fpga , channel , (void *)buf , BUF_SIZE , 0, 1, 0);

fpga_recv(fpga , channel , (void *)buf , BUF_SIZE , 0);

fpga_close(fpga);

return 0;

}

12

4 Compiling and using the Xilinx Example Designs

Vivado 2014.4 was used in all example designs and documentation included in this distribution.
We highly recommend using 2014.4 and all newer versions of the software, since we have encoun-
tered bugs in previous versions of the Vivado (e.g. 2014.2) software. This guide assumes that
the end-user has already configured their board for PCI Express operation. See the VC709 User
Guide 1, VC707 User Guide 2 or ZC706 User Guide 3.

While we have not tested all of the current-generation Xilinx development boards, we are confident
that they can be supported with minimal modifications. For more information about supporting
new boards, see the sections 4.1.2 and 4.2.2. These sections cover the settings used in the RIFFA
example design IP.

The easiset way to use RIFFA is to start with one of the example designs included in the dis-
tribution. Sections 4.1.1 and 4.2.1 describe how to use and compile these designs for the VC707
and VC709 boards respectively. These example designs are ready to compile out of the box, and
require no user IP configuration and generation. The designs also include pre-compiled bit-files in
the bit directory of the example project. For advanced users, we also describe how we generated
the PCIe IP in sections 4.1.2 and 4.2.2.

4.1 Classic - 7 Series Integrated Block for PCI Express - (VC707, ZC706 and
older)

This is a step by step guide for using RIFFA 2.2.0 on a Xilinx FPGA with the 7 Series Integrated
Block for PCI Express Core. This core is supported on the ZC706, and VC707 development
boards, using the 64-bit and 128-bit AXI interfaces.

4.1.1 VC707 and ZC706 Example Designs

There is one VC707 example design and two ZC706 example designs in the RIFFA 2.2.0 distribu-
tion. The VC707 example design folders are in RIFFA 2.2.0/source/fpga/vc707 and the ZC706
example design folders are in RIFFA 2.2.0/source/fpga/zc706.

1. Open Vivado to get the introductory screen shown in Figure 4.1.

2. Click ’Open an Existing Project’ and navigate to your RIFFA 2.2.0 directory.

3. In the RIFFA 2.2.0 distribution, open RIFFA 2.2.0/source/fpga/xilinx/vc707/ or RIFFA
2.2.0/source/fpga/zc706 and choose from one of the existing example design directories for
your board. In the example design directory, locate the prj folder and open it. Select the
.xpr file and click open. This will open the example project, as shown in Figure 4.2.

4. This project was compiled in Vivado 2014.4. The bit file generated can be used to test the
FPGA system. If you are using a newer version of Vivado, recompile the example design or
use the programming file provided.

1 http://www.xilinx.com/support/documentation/boards and kits/vc709/ug887-vc709-eval-board-v7-fpga.pdf
2 http://www.xilinx.com/support/documentation/boards and kits/vc707/ug848-VC707-getting-started-
guide.pdf

3 http://www.xilinx.com/support/documentation/boards and kits/zc706/ug954-zc706-eval-board-xc7z045-ap-
soc.pdf

Figure 4.1: Welcome Screen for Vivado 2014.4

• IP Settings are now packaged as part of the example designs! Users no longer need to
generate IP.

• To recompile the example design, click the generate bitstream button in the top left
corner as shown in Figure 4.2.

• Recompiling your design will generate a new bitfile in the Xilinx project. The bit file
in the bit will not be changed.

5. To program the FPGA, click ’Open Hardware Manager’. New bit files (generated by Vivado)
will appear in Vivado’s internal directory. An example bit file is provided in the example
design’s bit. Load the bitstream to your VC707 or ZC706 board and restart your computer.

• Before programming your FPGA, you should install the RIFFA driver. See Section 3

6. The example design uses the chnl tester (shown in Figure 4.3, which works with the example
software in the source/{C C++,Java,python,matlab} directories. Replace the chnl tester
instantiation with any user logic, matching the RIFFA interface.

7. Recompile the design and program the FPGA Device. Changing the C NUM CHNL will
change the number of independent channel interfaces

4.1.2 Generating the 7 Series Integrated Block for PCI Express

The following steps are not required for general users. See the instructions above for how to
compile RIFFA.

Alternatively, it is possible to generate the PCIe Endpoint with different settings than those
provided in the example design. Modifying the RIFFA parameters C PCI DATA WIDTH,
C MAX PAYLOAD BYTES and C LOG NUM TAGS, change certain settings in the IP

14

Figure 4.2: Project Splash Screen for 7Series Integrated Block for PCI Express Projects

Figure 4.3: Project Splash Screen for 7Series Integrated Block for PCI Express Projects

15

Core. The C NUM LANES is a parameter in the top level file of each example project. How
these parameters relate to IP core settings is highlighted in the following figures.

If the goal is to generate a RIFFA design completely from scratch, each board directory comes
with a RIFFA wrapper verilog file and instantiates a vendor-specific translation layer. It is highly
recommended to re-use these files RIFFA wrapper when creating designs from scratch.

To generate the PCIe IP select the 7 Series Integrated Block for PCI Express after selecting the IP
Catalog shown in Figure 4.2. This will open the IP Customization window as shown in Figure 4.4

Figure 4.4: Basic settings tab.

First, select Mode to ADVANCED from the drop down menu. This will cause more tabs to
appear in the bar. The following tabs are not used during customization: Link Registers, Power
Mangement, Ext. Capabilities, Ext. Capabilities 2, TL Settings and DL/PL Settings.

In Figure 4.4 , we have set the Xilinx Development Board to VC707, selected the PCIe Gen1
rate 2.5 GT/s, and a Lane Width of 8 (C NUM LANES = 8). We have chosen to set the
AXI Interface Width to 64-bits (C PCI DATA WIDTH = 64). The choice of Link Rate,
Lanes, and Interface Width will allow different AXI Interface Frequencies to be selected. The
RIFFA core will run at this clock frequency, but the user logic can run at whatever frequency it
desires.

Optional: Set the Component Name of the PCI Express block, and the IP Location. In our
example projects, we use the name template PCIeGenWxYIfZ where W is the PCI Express
Version (Link Speed in Figure 4.4), Y is the lane width, and Z is the AXI interface width. The
IP location is the ip directory in the example project.

Note: For RIFFA 2.2.0 the 128-bit interface is temporarily not supported for the 7 Series Inte-
grated Block for PCI Express. Support will return in version 2.2.1.

16

Figure 4.5: PCI Express ID Tab.

The tab in Figure 4.5 is optional. Setting the Device ID may assist in identifying different FPGAs
in a multi-FPGA system. The other options, specifically the Vendor ID, must remain the same.

Figure 4.6: PCI Express Base Address Register (BAR) ID Tab.

The tab in Figure 4.6 must be configured so that BAR0 is enabled (checked). Set the Type to
Memory, and Unit Kilobyte, and Size Value to 1 from the dropdown menus. If these values
are not set correctly the RIFFA driver will not recognize the FPGA device.

17

Figure 4.7: PCI Express Capabilities Tab.

In this tab select the boxes Buffering Optimized for Bus Mastering Applications and
Extended Tag Field. If the Extended Tag Field is selected C LOG NUM TAGS = 8,
otherwise C LOG NUM TAGS = 5. Select the Maximum Payload Size from the dropdown
menu. Use this to set the RIFFA C MAX PAYLOAD BYTES parameter.

Note: Maximum Payload sizes are typically set by the BIOS, and 256 bytes seems to be standard.
RIFFA will default to the minimum of C MAX PAYLOAD SIZE and the setting in your
BIOS. Unless your BIOS is modified, or can support substantially larger packets, there will be
no performance benefit to increasing the payload size. Increasing the maximum payload size will
increase the resources consumed.

Figure 4.8: PCI Express Interrupts Tab.

18

In the Interrupts Tab shown in Figure 4.8 clear the checkbox for Enable INTx (To disable
INTx). The remaining options should match those shown in Figure 4.8

Figure 4.9: Shared Logic Tab

In the Shared Logic Tab shown in Figure 4.9 clear all of the checkboxes shown. These settings
will not affect the core generated, but will affect the example designs generated by Vivado. As a
result, the Example Design will mirror the RIFFA example design provided.

Figure 4.10: Core Interface Parameters Tab

Finally, in the Interface Parameters tab, match the checkboxes shown in Figure 4.10. These
options simplify the interface to the generated core

19

4.1.3 Creating Constraints files for the VC707 Development Board

When generating a design for the VC707 board, the following constraints will correctly constrain
the clocks. When using a different board, read the user guide for appropriate pin placment, or
copy the constraints from the PCIe Endpoint Example Design. The remaining constraints are
contained the generated PCIe IP.

Listing 4.1: .xdc constraints for the VC707 board

set_property PACKAGE_PIN AV35 [get_ports PCIE_RESET_N]

set_property IOSTANDARD LVCMOS18 [get_ports PCIE_RESET_N]

set_property PULLUP true [get_ports PCIE_RESET_N]

The following constraints are BOARD SPECIFIC. This is for the VC707

set_property LOC IBUFDS_GTE2_X1Y5 [get_cells refclk_ibuf]

create_clock -period 10.000 -name pcie_refclk [get_pins refclk_ibuf/O]

set_false_path -from [get_ports PCIE_RESET_N]

4.1.4 Creating Constraints files for the ZC706 Development Board

When generating a design for the ZC706 board, the following constraints will correctly constrain
the clocks. When using a different board, read the user guide for appropriate pin placment, or
copy the constraints from the PCIe Endpoint Example Design. The remaining constraints are
contained the generated PCIe IP.

Listing 4.2: .xdc constraints for the ZC706 board

set_property IOSTANDARD LVCMOS15 [get_ports PCIE_RESET_N]

set_property PACKAGE_PIN AK23 [get_ports PCIE_RESET_N]

set_property PULLUP true [get_ports PCIE_RESET_N]

The following constraints are BOARD SPECIFIC. This is for the ZC706

set_property LOC IBUFDS_GTE2_X0Y6 [get_cells refclk_ibuf]

create_clock -period 10.000 -name pcie_refclk [get_pins refclk_ibuf/O]

set_false_path -from [get_ports PCIE_RESET_N]

20

4.2 Ultrascale - Gen3 Integrated Block for PCI Express - (VC709 and newer)

This is a step by step guide for building a RIFFA 2.2.0 reference design for Xilinx FPGA’s com-
patible with the Gen3 Integrated Block for PCI Express. In RIFFA 2.2.0 there are three example
designs for the VC709 board in the RIFFA 2.2.0/source/fpga/vc709 directory: VC709 Gen1x8If64
(PCIe Gen1, 8 lanes, 64-bit CHNL interface), VC709 Gen2x8If128 (PCIe Gen2, 8 lanes, 128-bit
CHNL interface), VC709 Gen3x4If128 (PCIe Gen3, 8 lanes, 128-bit CHNL interface). To use one
of these example designs, follow the instructions below.

4.2.1 VC709 Example Designs

1. Open Vivado to get the introductory screen shown in Figure 4.1.

2. Click ’Open an Existing Project’ and navigate to your RIFFA 2.2.0 directory.

3. In the RIFFA 2.2.0 distribution, open RIFFA 2.2.0/source/fpga/xilinx/vc709/ and choose
from one of the existing example design directories for your board. In the example design
directory, locate the prj folder and open it. Select the .xpr file and click open. This will
open the example project, as shown in Figure 4.11.

4. This project was compiled in Vivado 2014.4. The bit file generated can be used to test the
FPGA system. If you are using a newer version of Vivado, recompile the example design or
use the programming file provided.

• IP Settings are now packaged as part of the example designs! Users no longer need to
generate IP.

• To recompile the example design, click the generate bitstream button in the top left
corner as shown in Figure 4.11.

• Recompiling your design will generate a new bitfile in the Xilinx project. The bit file
in the bit will not be changed.

5. To program the FPGA, click ’Open Hardware Manager’. New bit files (generated by Vivado)
will appear in the Vivado generated directories. An example bit file is provided in the
example design’s bit. Load the bitstream to your VC709 board and restart your computer.

• Before programming your FPGA, you should install the RIFFA driver. See Section 3

6. The example design uses the chnl tester (shown in Figure 4.3, which works with the example
software in the source/{C C++,Java,python,matlab} directories. Replace the chnl tester
instantiation with any user logic, matching the RIFFA interface.

7. Recompile the design and program the FPGA Device. Changing the C NUM CHNL will
change the number of independent channel interfaces

4.2.2 Generating the Gen3 Integrated Block for PCI Express

The following steps are not required for general users. See the instructions above for how to
compile RIFFA.

Alternatively, it is possible to generate the PCIe Endpoint with different settings than those pro-
vided in the example design. Changing the endpoint settings is required when changing the param-
eters C PCI DATA WIDTH, C MAX PAYLOAD BYTES and C LOG NUM TAGS.
The C NUM LANES is a parameter in the top level file of each example project. How these
parameters relate to IP core settings is highlighted in the following figures.

21

Figure 4.11: Project Splash Screen for Gen3 Integrated Block for PCI Express Projects

If the goal is to generate a RIFFA design completely from scratch, each board directory comes
with a RIFFA wrapper verilog file and instantiates a vendor-specific translation layer. It is highly
recommended to re-use these files RIFFA wrapper when creating designs from scratch.

To generate the PCIe IP select the 7 Series Integrated Block for PCI Express after selecting
the IP Catalog shown in Figure 4.11. This will open the IP Customization window as shown in
Figure 4.12

Figure 4.12: Basic settings tab.

First, select “ADVANCED” from the drop down menu. This will cause more tabs to appear in
the bar. The following tabs are not used during customization: MSIx Cap (Capabilities), Extd.

22

Capabilities 1, and Extd Capabilites 2.

In this example, we have set the Xilinx Development Board to VC709, and selected the PCIe
Gen1 rate of 2.5 GT/s, and a Lane Width of 8 (C NUM LANES = 8). We have chosen to
set the AXI Interface Width to 64-bits (C PCI DATA WIDTH = 64). Finally Clear the
Disable Client Tag and PCIe DRP Ports boxes. The choice of Link Rate, Lanes, and
Interface Width will allow different AXI Interface Frequencies to be selected. The RIFFA core
will run at this clock frequency, but the user logic can run at whatever frequency it desires.

Optional: Set the Component Name of the PCI Express block, and the IP Location. In our
example projects, we use the name template PCIeGenWxYIfZ where W is the PCI Express
Version (Link Speed in Figure 4.12), Y is the lane width, and Z is the AXI interface width.
The IP location is the ip directory in the example project.

Note: For RIFFA 2.2.0 the 256-bit interface is not supported, however the 128-bit interface is.
This means PCIe Gen2 with 8 lanes, and PCIe Gen3 with 4 lanes are both supported.

Figure 4.13: PCI Express Capabilities Tab.

In the Capabilities tab shown in Figure 4.13 check the Extended Tag Field box. If the Ex-
tended Tag Field is selected C LOG NUM TAGS = 8, otherwise C LOG NUM TAGS
= 5. Set the PFO Max Payload Size from the dropdown menu; Use this to set the RIFFA
C MAX PAYLOAD BYTES parameter.

Note: Maximum Payload sizes are typically set by the BIOS, and 256 bytes seems to be standard.
RIFFA will default to the minimum of C MAX PAYLOAD SIZE and the setting in your
BIOS. Unless your BIOS is modified, or can support substantially larger packets, there will be
no performance benefit to increasing the payload size. Increasing the maximum payload size will
increase the resources consumed.

23

Figure 4.14: PCI Express IDs Tab.

The tab in Figure 4.14 is optional. Setting the Device ID may assist in identifying different
FPGAs in a multi-FPGA system. The other options, specifically the Vendor ID, must remain the
same.

Figure 4.15: PCI Express Base Address Registers (BAR) Tab.

The tab in Figure 4.15 must be configured so that BAR0 is enabled. Select type Memory, and
Unit Kilobyte, and Size Value 1 from the dropdown menus. If these values are not set correctly

24

the RIFFA driver will not recognize the FPGA device.

Figure 4.16: PCI Express Legacy and MSI Interrupts Tab.

In the Legacy/MSI Capabilites tab shown in Figure 4.16, select None in the PFO Interrupt
Pin Dropdown menu and set the PFO Multiple Message Capable dropdown menu to 1
Vector

Figure 4.17: PCI Express Power Management Tab.

25

In the Power Management tab, shown in Figure 4.17, ensure that the Performance Level is set
to Extreme.

Figure 4.18: PCI Express Shared Logic Tab.

In the Shared Logic Tab shown in Figure 4.18 clear all of the checkboxes shown. These settings
will not affect the core generated, but will affect the example designs generated by the Vivado,
and make the Vivado example design mirror the RIFFA Example design.

Figure 4.19: PCI Express Core Interface Parameters Tab.

26

Finally, in the Interface Parameters tab, match the checkboxes shown in Figure 4.19. These
options simplify the interface to the generated core

4.2.3 Creating Constraints files for the VC709 Development Board

When generating a design for the VC709 board, the following constraints will correctly constrain
the clocks. When using a different board, read the user guide for appropriate pin placment, or
copy the constraints from the PCIe Endpoint Example Design.

Listing 4.3: .xdc constraints for the VC709 board

create_clock -period 10.000 -name pcie_refclk [get_pins refclk_ibuf/O]

set_false_path -from [get_ports PCIE_RESET_N]

The following constraints are BOARD SPECIFIC. This is for the VC709

set_property LOC IBUFDS_GTE2_X1Y11 [get_cells refclk_ibuf]

set_property PACKAGE_PIN AV35 [get_ports PCIE_RESET_N]

set_property IOSTANDARD LVCMOS18 [get_ports PCIE_RESET_N]

set_property PULLUP true [get_ports PCIE_RESET_N]

27

5 Compiling and using the Altera Example Designs

This section describes how to use RIFFA 2.2.0 with Quartus 14.1. The example projects included
in this distribution target Terasic DE5Net and DE4 boards. We are confident that RIFFA will
work on all currently supported Altera devices using the Hard IP for PCI Express (Cyclone V,
Arria V and Stratix V) devices, as well as all devices using IP Compiler for PCI Express (Stratix
IV and prior). For device support in Quartus 14.1see 1

The FPGA families that we have successfully tested RIFFA 2.2.0 are:

• Stratix V (DE5-Net)

• Stratix IV (DE4)

There are three options for starting a new RIFFA project:

• For first-time users with a DE5 board, we recommend the archived projects provided in the
RIFFA 2.2.0/source/fpga/de5 qsys directory. Follow the instructions in Section 5.1.1

• Intermediate and advanced users, or users with a DE4 board, we have provided projects
without instantiated IP. For DE5 boards, follow the instructions in Section 5.1.2. For DE4
boards, follow the instructions in Section 5.2

• For advanced users, or users wishing to support a new board, we provide full instructions
for creating a top level and generating IP. Follow the instructions in Section 5.1

5.1 Example Designs with Qsys and MegaWizard (Stratix V, Cyclone V and
newer)

5.1.1 Qsys (Stratix V and newer)

For first-time users with the DE5-Net board, copy one of the archived projects (.qar files) available
in the de5 qsys directory.

1. Open Quartus to get the introductory screen shown in Figure 5.1.

2. Click ’Open an Existing Project’ and navigate to your RIFFA 2.2.0 directory.

3. In the RIFFA 2.2.0 distribution, open RIFFA 2.2.0/source/fpga/de4/ and choose from one
of the existing example design directories for your board. In the example design directory,
locate the prj folder and open it. Select the .qpf file and click open. This will open the
example project, as shown in Figure 5.2.

4. This project was compiled in Quartus 14.1. The bit file generated can be used to test the
FPGA system. If you are using a newer version of Quartus, recompile the example design
or use the programming file provided.

• To recompile the example design, click the compile button in the top left corner as
shown in Figure 5.2.

1 http://dl.altera.com/devices/

Figure 5.1: Welcome Screen for Quartus 14.1

• Recompiling your design will generate a new bitfile in the prj directory. The bit file in
the bit will not be changed.

5. To program the FPGA, click ’Open Programmer’. New bit files (generated by Quartus) will
appear in the prj/output files/ directory. An example bit file is provided in the example
design’s bit directory.

• Before programming your FPGA, you should install the RIFFA driver. See Section 3

6. The example design uses the chnl tester (shown in Figure 5.3, which works with the example
software in the source/{C C++,Java,python,matlab} directories. Replace the chnl tester
instantiation with any user logic, matching the RIFFA interface.

7. Recompile the design and program the FPGA Device. Changing the C NUM CHNL will
change the number of independent channel interfaces

5.1.2 Generating IP using MegaWizard (Stratix V, Cyclone V and newer)

In some cases, it may be necessary to generate the PCIe Endpoint IP. For intermediate users,
there are project example projects inside of the de5 directory without instantiated IP (This is
done to avoid licensing problems). For the DE5, the project directories are: DE5Gen1x8If64,
DE5Gen2x8If128, DE5Gen3x4If128.

Modifying the RIFFA parameters C PCI DATA WIDTH, C MAX PAYLOAD BYTES
and C LOG NUM TAGS require changing certain settings in the IP core file. The paramter
C NUM LANES is located in the top level file of each example project. How these parameters
relate to IP core settings is highlighted in the following figures.

For advanced users whose goal is to generate a RIFFA design completely from scratch, we provide
instructions for generating the timing constraints and other low level details. Each board directory
contains with a RIFFA wrapper verilog file and instantiates a vendor-specific translation layer. It
is highly recommended to re-use these files RIFFA wrapper when creating designs from scratch.
Users should also use the constraints file (.sdc) in the board directory, and in the constr/, or
read the User Guide provided with each board and the instructions for generating constratints in
Section 5.1.3.

29

Figure 5.2: Project Splash Screen for Quartus Projects

Figure 5.3: chnl tester instantiation in the top level file

30

As stated in Section 2.3, each project directory contains five folders.

• The prj/ directory contains the project .qpf and .qsf file.

• The hdl/ contains the top level file, e.g. DE5Gen2x8If128.v, which instantiates the skeleton
IP and the RIFFA Core.

• The ip/ directory is empty but will contain Altera IP generated by Quartus in the following
guide.

• The constr/ directory contains project-specific timing constraint files.

• Finally the bit/ directory contains the project .sof, or bit file that we have tested. This
bitfile will not be overwritten by subsequent Quartus compilations.

Note: The bitfile in the bit directory is not modified by recompilation in Quartus. Quartus will
generate a new bitfile (.sof) in the prj/ directory for the DE5Net board.

Figure 5.4: Qsys Diagram depicting the connections between the three Altera IP blocks.

Altera designs require additional IP to drive the PCIe Core Transcievers. For the DE5, these
blocks are the Transciever Reconfiguration Controller and the Reconfiguration Driver. When

31

creating a new top level design, these blocks must be connected together with the PCIe Endpoint
as shown in Figure 5.4.

First, we will generate the PCIe Endpoint. Click on the Avalon Streaming Interface for PCI
Express in the Quartus IP Catalog. Figure 5.9.

Optional: Set the Component Name of the PCI Express block, and the IP Location. In our
example projects, we typically use the name PCIeGenWxYIfZ where W is the PCI Express
Version (Link Speed in Figure 4.12), Y is the lane width, and Z is the Avalon interface width.
The IP location is the ip/ directory in the example project.

32

Figure 5.5: PCI Express Endpoint Configuration Menu

33

In Figure 5.5, select the Number of Lanes, which corresponds to the top level parameter
C NUM LANES, Lane Rate, and PCI Express Base Specification version from the drop-
down menus (Choose the highest possible base specification version). Select an Application
Interface Width; This corresponds to the C PCI DATA WIDTH parameter in RIFFA.
Currently the 64-bit and 128-bit interfaces are supported for all Altera designs. Some widths
may not be possible depending on the Lane Rate and Number of Lanes selected.

The choice of Link Rate, Number of Lanes, and Interface Width will set the frequency for
the PCI interface, which is clocked by the pld clk signal. For the chosen settings, the frequency
should be displayed in the messages bar at the bottom of the configuration menu (Messages bar
not shown). The RIFFA core will run at this clock frequency, but the user logic can run at
whatever frequency it desires.

In the Base Address Registers Section set BAR0’s type to 32-bit non-prefetchable memory
and set the size to 1 KByte - 10 Bits.

There are no required changes in the Device Identification Registers Section. However, in a
multiple FPGA system, it may be useful to change the Device ID to allow identification of
different FPGA platforms. The other options, specifically the Vendor ID, must remain the
same.

Scroll down to view the final two sections shown in Figure 5.6.

Figure 5.6: PCI Express Endpoint Configuration Menu

In the PCI Express/PCI Capabilities menu, set your desired Maximum Payload Size, which
corresponds to the RIFFA parameter, C MAX PAYLOAD BYTES and the Number of
Tags Supported. The log of the Number of Tags Supported is the C LOG NUM TAGS
parameter in RIFFA.

In the MSI Tab, make sure that the number of MSI messages requested is equal to 1.

Note: Maximum Payload sizes are typically set by the BIOS, and 256 bytes seems to be standard.
RIFFA will default to the minimum setting C MAX PAYLOAD SIZE and the setting in your

34

BIOS. Unless your BIOS is modified, or can support substantially larger packets, there will be
no performance benefit to increasing the payload size. Increasing the Maximum Payload Size
will increase the resources consumed.

Finally, record the number of Transciever Reconfiguration Interfaces in the messages bar
at the bottom of the screen, then close the PCIe IP Generation Menu. A window may ask if you
wish to generate the example design. This is optional.

Figure 5.7: Transciever Reconfiguration IP Generation Menu

Next, generate the Transceiver Reconfiguration Controller by opening MegaWizard and selecting
the Transceiver Reconfiguration Controller megafunction.

Set the appropriate number of Transciever Reconfiguration Interfaces in the Interface Bun-
dles Menu. In the analog features section, Enable Analog Controls and Enable Adaptive
Equalization block by clicking the appropriate boxes.

Optional: Set the Component Name of the Transciever Reconfiguration Controller, and the IP
Location. In our example projects, we typically use the name XCVRCtrlGenWxY where W is
the PCI Express Version (Link Speed in Figure 5.5), Y is the lane width. The IP location
is the ip/ directory in the example project.

35

Figure 5.8: Transciever Reconfiguration Driver Menu

In Qsys, generate the Transciver Reconfiguration Controller. Select the appropriate lane rate for
your design, and the number of Reconfiguration Intefaces. These should match the number of
reconfiguration interfaces dictated when generating the PCIe IP in Figure 5.5 and the number
selected in Figure 5.7.

Optional (in Qsys): Set the Component Name of the Transciever Reconfiguration Driver, and the
IP Location. In our example projects, we typically use the name XCVRDrvGenWxY where W
is the PCI Express Version (Link Speed in Figure 4.12), and Y is the lane width. The IP
location is the ip directory in the example project.

If you are using Megawizard to instantiate IP, you must manually instantiate the Transciver
Reconfiguration Driver in the Top Level design. The instantiation template is shown in Listing 5.1
into your top-level file. Match the PCIe generation, and chip generation for your project.

Listing 5.1: Manual (non-qsys) instantiation of Reconfiguration Driver

altpcie_reconfig_driver

#(

/* These values should match the values used for the PCIe Endpoint */

.number_of_reconfig_interfaces (10), /*Set This*/

.gen123_lane_rate_mode_hwtcl(‘‘Gen1 (2.5 Gbps)’’), /*Set This*/

.INTENDED_DEVICE_FAMILY(‘‘Stratix V’’)) /*Set This*/

XCVRDriverGen2x8_inst

(

/*Ports Here -- Copy from Example Designs */

);

36

5.1.3 Creating Constraints files for MegaWizard and QSys Designs

Advanced users may also want to edit and modify the constraint files. This not required or
recommended for novice users. The example designs in the RIFFA 2.2.0 distribution contain
appropriate constraint files for the example designs. However if the need arises, these constraints
are documented below.

To appropriately constrain your PCIe reference clocks, place the constraints shown in Listing 5.2
in your .sdc file. Modify the names PCIE REFCLK, PCIE TX OUT and PCIE RX IN to match
your design.

Listing 5.2: .sdc constraints for Qsys and Megawizard designs

create_clock -name PCIE_REFCLK -period 10.000 [get_ports {PCIE_REFCLK }]

derive_pll_clocks -create_base_clocks

derive_clock_uncertainty

Likewise, copy the constraints in Listing 5.3 into your .qsf file. Copy the location assignment
commands for each PCIe Pin in your reference design.

Listing 5.3: .qsf settings for Qsys and Megawizard designs

###

PCIE Connections

###

set_location_assignment <PCIE_REFCLK_PIN > -to PCIE_REFCLK

set_instance_assignment -name IO_STANDARD HCSL -to PCIE_REFCLK

set_location_assignment <PCIE_REFCLK_PIN(n)> -to ‘‘PCIE_REFCLK(n)’’

set_instance_assignment -name IO_STANDARD HCSL -to ‘‘PCIE_REFCLK(n)’’

set_location_assignment <PCIE_RESET_N > -to PCIE_RESET_N

set_instance_assignment -name IO_STANDARD ‘‘2.5 V’’ -to PCIE_RESET_N

For each PCIE Lane (L) set the pin locations from the board user guide!

##

#PCIE TX_OUT L

##

set_location_assignment <TX_LANE[L]_PIN > -to PCIE_TX_OUT [0]

set_location_assignment <TX_LANE[L]_PIN(n)> -to ‘‘PCIE_TX_OUT [0](n)’’

###

#PCIE RX_IN L

###

set_location_assignment <RX_LANE[L]_PIN > -to PCIE_RX_IN[L]

set_location_assignment <RX_LANE[L]_PIN(n)> -to ‘‘PCIE_RX_IN[L](n)’’

37

5.2 IP Compiler for PCI Express (Stratix IV, and older)

To avoid licensing problems, we do not package Altera IP for the DE4 board. Manual IP In-
stantiation is required when using the DE4 Board, and similar devices using the IP Compiler for
PCI Express. Changing the endpoint settings described here may change the RIFFA parameters
C PCI DATA WIDTH, C MAX PAYLOAD BYTES and C LOG NUM TAGS. How
these parameters relate to IP core settings is highlighted in the following figures.

There are sever example projects inside of the de4 directory folder without instantiated IP. For
the DE4 board, these projects are DE4Gen1x8If64, DE4Gen2x8If128.board.

As stated in Section 2.3, each project directory contains five folders.

• The prj/ directory contains the project .qpf and .qsf file.

• The hdl/ contains the top level file, e.g. DE5Gen2x8If128.v, which instantiates the skeleton
IP and the RIFFA Core.

• The ip/ directory is empty but will contain Altera IP generated by Quartus in the following
guide.

• The constr/ directory contains project-specific timing constraint files.

• Finally the bit/ directory contains the project .sof, or bit file that we have tested. This
bitfile will not be overwritten by subsequent Quartus compilations.

5.2.1 Generating IP with IP Compiler for PCI Express (Stratix IV, and older)

Note: The bitfile in the bit directory is not modified by recompilation in Quartus. Quartus will
generate a new bitfile (.sof) in the /output files directory for the DE4 board.

First, we will generate the PCIe Endpoint. Open the Altera IP Catalog and select the IP Compiler
for PCI Express. This will open the window shown in Figure 5.9.

Optional: Set the Component Name of the PCI Express block, and the IP Location. In our
example projects, we typically use the name PCIeGenWxYIfZ where W is the PCI Express
Version (Link Speed in Figure 4.12), Y is the lane width, and Z is the Avalon interface width.
The IP location is the ip directory in the example project.

In this guide, we will skip the Power Mangement tab shown in Figure 5.9.

38

Figure 5.9: IP Compiler for PCI Express System Settings Tab

In the first column of the System Settings Tab, select your Chip Generation/PHY Type
(Stratix IV GX for the DE4 board), Lanes, and Max Rate. The Number of Lanes is
the parameter C NUM LANES in the project top level file. In the second column, select the
PCI Express Version (2.0, or the highest possible) and set the Test Out Width to 0. In the
third column, select the Application Interface Width. The Application Interface Width
corresponds to the RIFFA parameter C PCI DATA WIDTH.

The choice of Link Rate, Lanes, and Interface Width will set the frequency for the PCI inter-
face, which is clocked by the signal pld clk. For the chosen settings, the frequency is determined
in the Chip User Guide (though, typically it is one of 62.5, 125, or 256 MHz)

39

Figure 5.10: IP Compiler for PCI Express Registers Tab

PCI Registers Tab, shown in Figure 5.10, set BAR0’s type to “32-bit non-prefetchable memory”.
Set the size to “1 KByte - 10 Bits”.

There are no required changes in the PCI Registers Tab. However, in a multiple FPGA system, it
may be useful to change the Device ID to identify different FPGA platforms. The other options,
specifically the Vendor ID, must remain the same.

40

Figure 5.11: IP Compiler for PCI Express Capabilities Tab

Open the Capabilities Tab shown in Figure 5.11. In the Device Capabilities box, set the Tags
Supported to 64. The log of the maximum number of tags supported is the RIFFA parameter
C LOG NUM TAGS parameter in RIFFA. In the MSI Capabilities box, set the number of
MSI Messages Requested to 1. All the remaining settings must stay the same.

41

Figure 5.12: IP Compiler for PCI Express Buffer Setup Tab

In Figure 5.12 select the Maximum Payload Size from the dropdown menu. Use this to set
the C MAX PAYLOAD parameter. Set the numer of Virtual Channels to 1.

Note: Maximum Payload sizes are typically set by the BIOS, and 256 bytes seems to be
standard. RIFFA will default to the minimum of C MAX PAYLOAD SIZE and the setting
in your BIOS. Unless your BIOS is modified, or can support substantially larger packets, there
will be no performance benefit to increasing the payload size. Increasing the Maximum Payload
size will increase the resources consumed.

Next, we need to generate the PLL for the example design. Select the ALTPLL megafunction
from the Quartus IP Catalog, to open the window shown in Figure 5.13.

42

Figure 5.13: ALTPLL General Settings Tab

In Figure 5.13, select the Speed Grade that matches your board (Found in the User Guide and
online). Next set the input clock frequency. The DE4 board provides 50 MHz clock inputs and
we use these for convenience. The remaining settings are unchaged. Click on the Inputs/Lock
tab to move on to Figure 5.14.

Optional: Set the name of the ALTPLL block. In the example designs we use the name ALT-
PLL50I50O125O250O, for 50 MHz Input clock, 50, 125, and 250 MHz output clocks. The 125
and 50 MHz Clocks are required for the PCIe Endpoint.

43

Figure 5.14: ALTPLL Input Settings Tab

Match the settings shown in Figure 5.14. In the Output Clocks Section, create a 50 MHz output
clock, 125 MHz clock, and 250 MHz Clock. Click Finish when done.

Finally, we generate the ALTGX RECONFIG Megafunction. Select the ALTGX RECONFIG
megafunction from the Quartus IP Catalog to produce the widown shown in Figure 5.15.

44

Figure 5.15: ALTGX Reconfiguration Settings Tab

In the Reconfiguration Tab shown in Figure 5.15, set the Number of Channels. This should be
equal to the number of PCIe Lanes at the Top Level. In the Features Section, Enable Analog
Controls. Match the settings in the remaining windows, shown in Figure 5.16,Figure 5.17, and
Figure 5.18.

45

Figure 5.16: ALTGX Reconfiguration Analog Settings Tab

46

Figure 5.17: ALTGX Reconfiguration Channel Tab

Figure 5.18: ALTGX Reconfiguration Error Tab

47

5.2.2 Creating Constraints files for IP Compiler Designs

Advanced users may also want to edit and modify the constraint files. This not required or
recommended for novice users. The example designs in the RIFFA 2.2.0 distribution contain
appropriate constraint files for the example designs. However if the need arises, we demonstrate
the constraints we used below.

If the goal is to generate a RIFFA design completely from scratch, each board directory comes
with a RIFFA wrapper verilog file and instantiates a vendor-specific translation layer. It is highly
recommended to re-use these files RIFFA wrapper when creating designs from scratch. Users
should also use the constraints file (.sdc) in the board directory, and in the constr/, or read the
User Guide provided with each board.

To appropriately constrain your PCIe reference clocks, place the constraints shown in Listing 5.4
in your .sdc file. Modify the name of the osc 50MHz and PCIE REFCLK ports to match your
design

Listing 5.4: .sdc constraints for Qsys and Megawizard designs

create_clock -name PCIE_REFCLK -period 10.000 [get_ports {PCIE_REFCLK }]

create_clock -name osc_50MHz -period 20.000 [get_ports {OSC_BANK3D_50MHZ }]

derive_pll_clocks -create_base_clocks

derive_clock_uncertainty

50 MHZ PLL Clock

create_generated_clock -name clk50 -source [get_ports {OSC_50_BANK2 }] \

[get_nets {*|altpll_component|auto_generated|wire_pll1_clk [0]}]

125 MHZ PLL Clock

create_generated_clock -name clk125 -multiply_by 5 -divide_by 2 -source \

[get_ports {OSC_50_BANK2 }] \

[get_nets {*|altpll_component|auto_generated|wire_pll1_clk [1]}]

250 MHZ PLL Clock

create_generated_clock -name clk250 -multiply_by 5 \

-source [get_ports {OSC_50_BANK2 }] [get_nets \

{*|altpll_component|auto_generated|wire_pll1_clk [2]}]

Likewise, copy the constraints in Listing 5.5 into your .qsf file. Copy the location assignment
commands for each PCIe Pin in your reference design.

Listing 5.5: .qsf settings for IP Compiler Designs

###

PCIE Connections

###

set_location_assignment <PCIE_REFCLK_PIN > -to PCIE_REFCLK

set_instance_assignment -name IO_STANDARD HCSL -to PCIE_REFCLK

set_location_assignment <PCIE_REFCLK_PIN(n)> -to ‘‘PCIE_REFCLK(n)’’

set_instance_assignment -name IO_STANDARD HCSL -to ‘‘PCIE_REFCLK(n)’’

set_location_assignment <PCIE_RESET_N > -to PCIE_RESET_N

set_instance_assignment -name IO_STANDARD ‘‘2.5 V’’ -to PCIE_RESET_N

For each PCIE Lane (L) set the pin locations from the board user guide!

##

#PCIE TX_OUT L

##

set_location_assignment <TX_LANE[L]_PIN > -to PCIE_TX_OUT [0]

set_location_assignment <TX_LANE[L]_PIN(n)> -to ‘‘PCIE_TX_OUT [0](n)’’

###

#PCIE RX_IN L

###

set_location_assignment <RX_LANE[L]_PIN > -to PCIE_RX_IN[L]

set_location_assignment <RX_LANE[L]_PIN(n)> -to ‘‘PCIE_RX_IN[L](n)’’

48

6 Developer Documentation

This chapter describes RIFFA 2.2.0 at a level of detail that is useful for RIFFA developers. Users
of RIFFA should not read this section until they are comfortable developing for RIFFA or have
experience with PCIe and DMA concepts.

6.1 Architecture Description

Figure 6.1: High level RIFFA Diagram

50

• IP Interfaces The Vendor IP interfaces provied low-level access to the PCIe bus. Each
vendor provides a set of signals for communicating over PCIe. Xilinx FPGAs without PCIe
Gen3 support provide an interface very similar to Altera FPGAs. We call this the “Classic
Interface”. Newer Xilinx devices with PCIe Gen3 support have completely different non-
compatible interfaces (CC, CQ, RC, RQ instead of RX and TX). We call this the “Xilinx
Ultrascale Interface”.

Files: *.xci, *.qsys (And others generated by vendor tools)

• Translation Layer The Translation Layer provides a set of vendor-independent interfaces
and signal names.

There is one translation layer for each interface. The “Classic Translation Layer” provides
a set of interfaces (RX, TX, Interrupt, and Configuration) and vendor independent signal
names to higher layers. There is very little logic in these layers, and there should be no
timing-critical logic here.

The “Ultrascale Translation Layer” operates on the ultrascale interface. Similar to the clas-
sic translation layer, it contains very little logic. It provides the interfaces: RX Completion,
RX Request, TX Completion, TX Request, Interrupt, and Configuration.

Files: translation altera.v, translation xilinx.v, txc engine ultrascale.v,
txr engine ultrascale.v

• Formatting Engine Layer The Formatting Engine Layer is responsible for formatting
requests and completions into packets. This layer provides four interfaces: RX Completion
(RXC) for receiving completions (responses to memory read requests), RX Request (RXR)
for receiving memory read and write requests, TX Completion (TXC) for transmitting
completions (reponses to memory read requests), and TX Request (TXR) for transmitting
read and write requests.

The engine layer abstracts vendor specific features, such as Xilinx’s Classic-Interface Big-
Endian requirement and Altera’s Quad-word Alignment. The C VENDOR parameter for
the engine layer switches between Xilinx, Altera, and Ultrascale logic to produce TLPs
(Classic Interface) and AXI Descriptors (Ultrascale Interface).

The RX path of the engine layer has packet parsers for TLPs and AXI Descriptors. These
are parameterized by width, as of RIFFA 2.2. The TX Path of the engine layer has packet
formatters for TLPs and AXI Descriptors.

As alluded to in the Translation Layer, the Classic IP Cores provide only two transmit
interfaces (RX, and TX), while the Xilinx Ultrascale IP Core handles RX Demultiplexing
and multiplexing internally and provides four interfaces (RXC, RXR, TXC, and TXR). For
this reason, the multiplexing/FIFO logic used in the Classic interfaces are not necessary for
the Xilinx interface.

After the Engine-Layer, higher layers should be vendor agnostic, if not bus agnostic. The
exception will be sideband signals signals. (How much of this ideal can be achieved remains
to be seen)

Note: The engine layer currently uses word-aligned addresses, and byte-enable signals to
specify sub-word addresses. In the future, all addresses will be byte-aligned and word enables
will be handled in the formatting logic.

Files: engine layer.v, schedules.vh, rx engine classic.v, rxc engine classic.v,
rxr engine classic.v, tx engine classic.v, txc engine classic.v,
txr engine classic.v, rx engine ultrascale.v, rxc engine ultrascale.v,

51

rxr engine ultrascale.v, tx engine ultrascale.v, txc engine ultrascale.v,
txr engine ultrascale.v

• Scatter Gather (SG) DMA Layer The Scatter Gather DMA Layer handles reading
from and writing to scatter gather lists and providing the addresses found in these lists to
the data-request logic in the Data Abstraction layer. In RIFFA, each channel has its own
SG DMA list logic.

The Completion Merge/Reorder buffer handles out-of-order completions. In the PCIe spec-
ification, a memory request can be serviced by multiple smaller completions (the responses
must remain in order). Completions from different memory requests can be returned in any
order. The reorder buffer releases data when all of the responses to a memory request have
been received.

Memory read and write requests to the host are multiplexed by the TX Request Mux. These
are serviced fairly in round robin order.

The Scatter Gather List Readers issue read requests to read data from the Scatter Gather
List (SGL) created by the driver. This list contains the address and length of pages con-
taining data to transmit. When an SGL has been exhausted, an interrupt is raised and the
SGL is refilled or the transaction is comlete.

Each element in the SGL 128-bit triple: 32’b0, 32’b Length of Data in 32-bit words, 64’b
Address of Page. The addresses in this list are provided to the DMA Data Read Engine
in the Data Abstraction layer. Since the SGL must be a single continuous stream of 128-
bit elements regardless of the size of the interface, gaps and mis-alignments due to packet
formatting are removed using the Data Packer, which receives its data from the reorder
buffer.

The location of the SGL in host memory is written to the BAR Memory space. The BAR
Memory space is partitioned among the channels. Only the host can issue read and write
requests to this memory space. Since the memory space is partitioned, the RX Request
interface and TX Completion interface do not have demultiplexing or multiplexing logic.

A more through treatment of the SG DMA Layer can be found in Sec. 6.1.1.

Files: reorder queue*.v, sg list reader *.v, sg list requester.v
fifo packer *.v, registers.v, tx multiplexer *.v

• Data Abstraction / DMA Layer The Data Abstraction / DMA Layer is responsible for
making requests to read data from, or write data to host memory.

The read and write addresses are provided by the Scatter Gather list readers. Since RIFFA
provides a single continuous stream of 32-bit words regardless of the size of the interface,
gaps and mis-alignments due to packet formatting are removed using the Data Packer, which
receives its data from the reorder buffer. On the TX side, this is not necessary. However a
write buffer, and other transaction tracking logic is necessary for buffering, and removing
non-integral data.

A more through treatment of the Data Abstraction Layer can be found in Sec. 6.1.2.

Files: reorder queue*.v, rx port *.v, rx port reader.v,
fifo packer *.v, tx port writer.v tx port buffer *.v tx port monitor *.v

• Channel Interface Files: rx channel gate *.v, tx channel gate *.v

• User LogicUser LogicUser LogicUser LogicUser LogicUser LogicUser LogicUser LogicUser LogicUser LogicUser LogicUser LogicUser LogicUser LogicUser LogicUser LogicUser Logic

52

6.1.1 Scatter Gather DMA Layer

READS from the SG lists are prioritized

6.1.2 Data Abstraction DMA Layer

6.2 Software Description

6.3 FPGA RX Transfer / Host Send

Parameter Value
Data Transfer Length 128 (32-bit words)
Data Transfer Offsfet 0
Data Transfer Last 1
Data Transfer Channel 0
Data Page Address (DMA) 0x00000000 FEED0000
SGL Head Address 0x00000000 BEEF0000

• A user makes an call to fpga send() to transfer 128 32-bit words of data on Channel 0.

• The RIFFA driver writes {32’d128} to Channel 0’s RX Length register, and {31’d0,1’b1}
to Channel 0’s RX OffLast register. This notifies the FPGA that a new transfer is hap-
pening and will raise CHNL RX for the user application. Files: rxr engine *.v, registers.v,
channel*.v, rx port.v rx port gate.v, rx port reader.v

• The RIFFA driver allocates an SGL with 1 element (4 32-bit words) at address
{64’h0000 0000 BEEF 0000}. The driver fills the list with the length and address of the
user data:
{32’d0,32’d128,64’h0000 0000 FEED 0000}.

• The RIFFA driver communicates the address and length of the SGL by writing
{32’hBEEF0000} to to Channel 0’s RX SGL Address Low register, {32’d0} to to Channel
0’s RX SGL Address High register, and {32’d4} to to Channel 0’s RX SGL Length register.
Writing the RX SGL Length register notifies the RX SG Engine that a transfer has started,
and the low and high portions of the 64-bit RX SGL Address are valid. Files: rxr engine *.v,
registers.v, channel*.v, rx port.v, sg list requester.v

• The SG List Requester on the FPGA issues a read request for 4 32-bit words of data starting
at address 0xBEEF0000. The FPGA also issues an interrupt. The RIFFA driver reads the
Interrupt Status Register of the FPGA and determines that Channel 0 has finished read-
ing the RX SGL. Files: sg list requester.v, rx port requester mux.v, rx port *.v, channel*.v,
tx multiplexer.v, engine layer.v, txr engine *.v, interrupt.v

• The FPGA receieves a completion with 4 32-bit words. After being enqueued in the reorder
buffer, the completion is delivered to Channel 0, and packed into the SGL RX Fifo. Files:
rxc engine *.v, engine layer.v, reorder queue*.v, fifo packer *.v

• The RX Port Reader removes the SG element from the FIFO, and issues several read
requests to receive all 128 32-bit words. Files: rx port reader.v, rx port *.v, channel*.v,
tx multiplexer.v, engine layer.v, txr engine *.v, tx multiplexer.v

• The completions return interleaved and are reordered in the reorder buffer. The reorder
buffer releases the completions in order to the fifo packer, which puts them in the FIFO.
The RX Port Channel Gate issues the data to the user. Files: rxc engine *.v, engine layer.v,
reorder queue*.v, fifo packer *.v, rx port reader.v, rx port channel gate.v, channel*.v

53

• The FPGA raises an interrupt with the last word of data is put into the Main Data Fifo.
The RIFFA driver reads the Interrupt Status Register of the FPGA and determines that
Channel 0 has finished the RX Transaction. The RIFFA driver reads the RX Words Read
register to determine how many words were read during the transaction.

• Control is returned to the user.

6.4 TX Transfer

6.5 FPGA RX Transfer / Host Send

Parameter Value
Data Transfer Length 128 (32-bit words)
Data Transfer Offsfet 0
Data Transfer Last 1
Data Transfer Channel 0
Data Page Address (DMA) 0x00000000 FEED0000
SGL Head Address 0x00000000 BEEF0000

• A user makes an call to fpga recv() to transfer 128 32-bit words of data from Channel 0.

• The RIFFA driver allocates an SGL with 1 element (4 32-bit words) at address
{64’h0000 0000 BEEF 0000}. The driver fills the list with the length and address of the
user data: {32’d0,32’d128,64’h0000 0000 FEED 0000}.

• The user application independently raises CHNL TX and starts writing data to
CHNL TX DATA. RIFFA core logic reads transaction parameters from CHNL TX OFF,
CHNL TX LAST, and CHNL TX LEN and acknowledges them with CHNL TX ACK.
Files: tx port channel gate.v

• An interrupt is raised by the FPGA. The RIFFA driver reads the Interrupt Status Register
of the FPGA and determines that Channel 0 wishes to start a new TX Transaction. The
driver ISR reads {32’d128} from Channel 0’s TX Length register, and {31’d0, 1’b1} from
Channel 0’s TX OffLast register. Reading the OffLast register notifies the FPGA that
the new transfer has been accepted. Files: rxr engine *.v, riffa.v, registers.v, channel*.v,
tx port *.v, tx port writer.v, tx port monitor *.v, engine layer.v, txc engine *.v

• The RIFFA driver communicates the address and length of the SGL by writing
{32’hBEEF 0000} to to Channel 0’s TX SGL Address Low register, {32’d0} to to Channel
0’s TX SGL Address High register, and {32’d4} to to Channel 0’s TX SGL Length register.
Writing the TX SGL Length register notifies the TX SG Engine that a transfer has started,
and the low and high portions of the 64-bit TX SGL Address are valid. Files: rxr engine *.v,
registers.v, channel*.v, rx port.v, sg list requester.v

• The SG List Requester on the FPGA issues a read request for 4 32-bit words of data start-
ing at address 0xBEEF0000. The FPGA raises an interrupt. The RIFFA driver reads the
Interrupt Status Register of the FPGA and determines that Channel 0 has finished read-
ing the TX SGL. Files: sg list requester.v, rx port requester mux.v, rx port *.v, channel*.v,
tx multiplexer.v, engine layer.v, txr engine *.v, interrupt.v

• The FPGA receieves a completion with 4 32-bit words. After being enqueued in the reorder
buffer, the completion is delivered to Channel 0, and packed into the SGL TX Fifo. Files:
rxc engine *.v, engine layer.v, reorder queue*.v, fifo packer *.v

54

• The TX Port Writer removes the SG element from the FIFO, and issues several write
requests to write all 128 32-bit words. Files: tx port monitor.v, tx port writer.v, tx port *.v,
channel*.v, tx multiplexer.v, engine layer.v, txr engine *.v, tx multiplexer.v

• When the last write transaction has been accepted by the core, the FPGA raises an interrupt.
The RIFFA driver reads the Interrupt Status Register of the FPGA and determines that
Channel 0 has finished writing data. The RIFFA driver reads the TX Words Written
register to determine how many words were written during the transaction (in case of early
termination, or overflow). Files: rxr engine *.v, riffa.v, interrupt.v, registers.v, channel*.v,
tx port *.v, tx port writer.v, engine layer.v, txc engine *.v

• Control is return to the user because the TX LAST signal was set to 1.

55

