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Abstract—The RISC-V specification is a highly flexible spec-
ification for low-cost processors. The RISC-V ISA is royalty
free, vendor agnostic, easily portable between development en-
vironments, and highly flexible to match the demands of an
application. These characteristics make RISC-V a natural ISA
choice for an FPGA soft processor and this has led to widespread
adoption in academia and industry. However, the sheer number
of RISC-V projects can be daunting for potential users.

This paper describes a tool for exploring RISC-V projects. Our
tool provides a web-interface for executing C/C++ code, tests, and
benchmarks. Our tool is packaged with interactive tutorials for
extending, modifying, and reproducing our work.

I. INTRODUCTION

The RISC-V specification is a royalty-free Instruction Set
Architecture (ISA) standard for low-cost processors [1]. The
specification defines 32-bit, 32-bit embedded, 64-bit, and 128-
bit base ISAs and optional extensions for compressed, multi-
plication, atomic, single, double, and quad-precision floating
point instructions. This has lead to led to widespread adoption
in academia and industry and an overwhelming proliferation
of projects. For example, the Rocket-Chip from UC Berke-
ley implements the canonical RISC-V System-on-Chip for
architecture research [2]. The academic start-up VectorBlox
has produced Orca to host the MXP vector processor [3].
Roal ogic has developed RV12, a commerical RISC-V IP [4].
Finally, the VexRiscV project implements a high-performance
RISC-V processor for FPGAs [5]. This is flexibility is a
major benefit for designers, because it allows them to chose
extensions to fit their design goals.

However, the flexibility of RISC-V makes evaluating a
single project and comparing between projects difficult. Single
projects contain many tuning parameters. Individual projects
implement different sets of extensions, different versions of the
specification, or worse, deviate from the specification entirely.
These cross-project differences can cause code that runs on
one processor to hang on another.

We need a tool for studying RISC-V soft-processors so
that potential users can evaluate the intra- and inter-project
tradeoffs. Such a tool must faciliate experiments by providing
an interface to run code, tests, and benchmarks. This tool
must be flexible enough to handle inter-ISA variations for
comparisons within the RISC-V family. The impact of such an
exploration tool would be widespread: Prospective users can
make informed choices about RISC-V projects; Researchers

can use collections of processor designs for comparative
research, and educators can use this tool to build RISC-V
curricula [6]. As a result, the RISC-V community can grow
using a flexible testing and development tool that encourages
competition.
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Fig. 1. Our work presented in this paper. Our tool provides a browser-based

interface for compiling C/C++ code, benchmarks, and ISA tests targeting a
library of RISC-V soft processors. This project is built on top of other widely
used software tools and is easily extensible to other RISC-V projects using
our provided tutorial.

In this paper we demonstrate our tool for evaluating FPGA-
Synthesizable RISC-V processors. A high-level overview of
our tool is shown in Figure 1. Our tool provides users with an
interface for writing and compiling user C/C++ code, standard
ISA tests, and benchmarks. We also provide a tutorial for
creating new RISC-V bitstreams. Together these parts provide
a flexible environment for evaluating RISC-V designs.

The main contributions of our work are:

o A environment for soft-processor exploration

o A tutorial for adding RISC-V processors to our environ-

ment

All the work in this paper can be found in our repositories,
under a BSD-3 license.

This paper is organized as follows: We describe our envi-
ronment in Section II. Section III describes related work in



Running RISC-V Code

The following cells demonstrate the use of our RISC-V Magic for C/C++ code. Running the first cell produces an add
RISCVProgram object in the IPython Namespace. To run this program, simply call the run () method.

In [1]: %%riscv mem reset add
int add(int op_a, int op_b){
return (op_a + op_b);

}

int main(){
int a = 21, b = 21;
return add(a, b);

}

Out[1l]: Compilation of program add SUCCEEDED

In [2]: ret = add.run(l)

if ret != 42:

raise RuntimeError("Add (C) test did not pass!")

else:
print("Test Passed!")

Out[2]: Test Passed!

Fig. 2. Our browser-based development environment for compiling C/C++ code to RISC-V processors. The first Jupyter Notebook cell demonstrates

compilation, and the second cell demonstrates code execution.

browser-based IDEs and soft-processor research. We conclude
in Section IV.

II. A RISC-V SOFT-PROCESSOR EXPLORATION TOOL

Choosing a RISC-V core from the growing list of projects
in daunting. The RISC-V specification is highly flexible and
lends itself to highly-parameterized projects. Projects imple-
ment different versions of the specification, different sets of
ISA extensions, or deviate from the base specification. RISC-
V projects are also written in many hardware development
languages. What users need is a tool for evaluating RISC-
V projects that allows them to explore the available RISC-V
projects with minimal committment.

An ideal tool for RISC-V exploration has several compo-
nents: It should provide an interface for writing, compiling,
and uploading code to a processor much like Arduino or
mbed [7] environments. This tool should include standard
benchmarks and ISA tests. This tool should be flexible to
handle inter-project variations. It should be able to handle a
variety of hardware interface standards (AXI, Avalon, BRAM,
and Wishbone). Such a tool would help users navigate the
overwhelming buffet of RISC-V projects available.

Figure 1 shows the tool we have developed for RISC-V
exploration that meets many of these requierments. All of
our work is built on top of PYNQ. PYNQ is a collection
of Python libraries for ZYNQ All-Programmable Systems on
Chip (APSoCs). We use PYNQ libraries to upload RISC-V
bitstreams into the PL, load and compiled binaries into the
RISC-V memory, and distribute our tutorial describing how
to extend our work with further projects. PYNQ boards come
pre-installed with a Jupyter Notebooks server and we use this
to provide a broswer-based interface for development.

The components of our work are descibed in the next
subsections. Section II-A describes our our tool for writing,

compiling, and running user code, tests, and benchmarks from
a web browser. Section II-C describes our interactive tutorial
for adding RISC-V projects to our library.

A. Development Environment

Modern embedded IDEs like Arduino and mbed [7] provide
the ability to write, upload, and run code from a single
interface. This provides a unified interface for compiling and
running user code. However, these IDEs target well-defined
ISAs, and the RISC-V ISA is highly flexible with many
extensions and projects that implement variations.

Our tool allows users to build and run C/C++ code on RISC-
V processors, and extends the abilities of the IDEs above
by providing benchmarks and ISA tests. These features are
described below.

1) Broswer-Based IDE: Our browser-based Integrated De-
velopment Environment (IDE) is built on top of Jupyter
Notebooks as shown in Figure 2. Our work is based on
the work in [8]. Jupyter Notebooks are interactive webpages
that provide a text-formatting and coding environments in
the form of cells. In PYNQ, Jupyter Notebooks are used to
deliver documented examples demonstrating PYNQ APIs and
peripherals.

Jupyter Notebooks are built on top of the IPython In-
terpreter. IPython runs Python code from notebook cells.
IPython also provides Magics, which allow users to run non-
Python commands, such as Bash Shell commands, or meta-
commands to modify the behavior of an IPython environment.
We use [Python Magics to provide a browser-based interface
for developing and running C/C++ code complete with syntax
highlighting.

An example of our IDE is shown in Figure 2. In this
example a simple RISC-V program is written that returns the



sum of two numbers a and b. The $%riscvc command
tells Jupyter to interpret this cell as an IPython Magic. The
$%riscv command three arguments: The PYNQ MMIO
obect representing the processor memory, the PYNQ GPIO
object representing the reset pin, and the name variable to be
created in the IPython namespace. If compilation succeeds,
the program can be run in subsequent cells.

The %%riscvc command is implemented in two
Python classes: RISCVMagics and RISCVProgram. The
RISCVMagics class implements the IPython Magic com-
mand $%riscvc. When the command is typed, this class
performs syntax highlighting on C/C++ code in the notebook
cell. When the cell is executed this class reads the code
and compiles it into a RISC-V binary. The class will print
SUCCEEDED, or FAILED (and a compiler error message)
depending on the compilation outcome. We also provide a
$%riscvasm command for RISC-V assembly.

If the compile succeeds, the RISCVMagic class will insert
a RISCVProgram object representing the compiled binary
into to the local namespace. This is shown in Cell 2 of
Figure 2. The RISCVProgram object represents a compiled
instance of a RISCVMagic cell and can be used to, start, stop
and run a compiled cell. When a RISCVProgram is run it
is uploaded to the memory of the RISC-V processor and the
RISC-V processor is released from reset.

B. Tests and Benchmarks

Our IDE also provides an interface for running ISA tests
and benchmarks from the standard RISC-V tests repository.
These are useful for developers who wish to explore RISC-V
projects and better understand the benefits and drawbacks of
diverse RISC-V projects.

Our interface is built on top of the browser-based devel-
opment environment from the previous section. Tests and
benchmarks are imported like Python libraries and compiled
prior to execution. Like the example in Figure 2, benchmarks
and tests can be run from Jupyter Notebook cells. Unlike
user program benchmarks and tests rely on standard RISC-
V features. For example, benchmarks rely on the presence of
cycle and instruction counters, and tests may notify the host
using an environment call instruction. These features are not
standard across projects.

To handle project variations we have modified the RISC-V
tests repository to add an interface that allows users to override
standard behavior. It is the responsibility of the developer to
add their variants so that their processor can be used in our
tool.

C. Tutorial

Creating a RISC-V overlay can be a daunting process for
a variety of reasons: the inaccessibility of HDLs, interface
standards, and complexity of vendor tools. To address this
problem we have created a tutorial for adding new RISC-
V processors to our environment. Our tutorial is a set of
interactive Jupyter Notebooks that teach the reader how to
build a PYNQ Overlay with a RISC-V processor for our tool.

Each notebook directs the user through a conceptual step, and
concludes with notebook cells that verify the notebook has
been completed successfully.

By the end of the tutorial readers should understand how
a PYNQ Overlay is comprised of Vivado-generated .tcl and
.bit files, user-generated Python classes, and packaging scripts.
Readers will should also be able to trivially extend this tutorial
to other soft-processor projects.

Our 5-notebook tutorial is organized as follows:

1) Configuring the Development Environment: The first
notebook of the tutorial teaches the reader how to install
dependencies both on a development machine and then on
the PYNQ board. The user is directed through installing
the Vivado tools, cloning the soft-processor git repository,
installing a visual-difftool (such as Meld). On the PYNQ board
the user is directed through installing packages from APT, and
cloning the necessary RISC-V GNU Toolchain repository.

2) Building a Bitstream: The second notebook of the
tutorial teaches a reader how to build an FPGA bitstream
for ZYNQ using a RISC-V processor project. It is divided
into three parts: Packaging a RISC-V project as a Vivado IP,
Creating a Block Diagram, and Building a Bitstream.

The notebook begins with Packaging a RISC-V project
as a Vivado IP teaching the reader how to package the
PicoRV32 RISC-V Processor from [9] as a Vivado IP. We
chose this processor because of its ease of use and flexibility.
It is highly parameterized, and provides AXI, Wishbone, and
BRAM interface standards, and integrates well with Vivado.
This section demonstrates how to package two variants of
the PicoRV32 processor: a variant with highly-flexible AXI
interfaces, and a variant with low-latency BRAM interfaces.

Creating a Block Diagram describes how to build a Block
Diagram for PYNQ inside of Vivado IP Integrator. The tutorial
provides a ‘“skeleton” .tcl file that opens a Vivado project,
creates a bloak diagram, instantiates the correctly-configured
ZYNQ Processing System (PS).

Next, the reader selects the PicoRV32 AXI or BRAM
variant they want to target and corresponding instructions. The
reader adds the processor variant, and all corresponding IP as
shown in Figure 3.

e 1 ZYNQ ARM Processing System

e 1 RISC-V Soft-Processor

o 1 Soft-Processor Memory Interconnect

e« 1 ARM PS AXI Interconnect

¢ 1 Soft-Processor Memory

o 2 Reset Controllers (Power-On-Reset, and Warm-Reset)

This section also describes how to connect the processor to
the memory system. Our design targets an AXI interface for
ease of use with Vivado but we also provide instructions for
other memory interface standards.

In Building a Bitstream, the reader validates the design and
exports the block diagram as a .tcl file, overwriting the skeleton
.tel file that was provided.. The reader is then asked to compile
their RISC-V design using the .tcl file they have created.

3) Compiling the RISC-V Toolchain: The third notebook
of this tutorial teaches the reader how to compile the RISC-V
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Fig. 3. The high-level system architecture expected by our tool and as described in Section II-A. Processors provide many interface standards and the
connection to memory is abstracted by the Soft-Processor Memory Interconnect block.

GNU Toolchain. When the compilation is complete subsequent
cells update the PATH environment variable on the reader’s
PYNQ board.

4) Packaging a Bitstream into an Overlay: The fourth
notebook of the tutorial teaches the reader how to package
the .tcl file, .bit file, and other newly-generated files into
a PYNQ Overlay. The notebook is divided into four parts:
Writing an Overlay Class, Creating a Notebooks Directory,
and Automating Installation / Installing

Writing an Overlay Class demonstrates how to create a
RISC-V overlay class, and declare it as part of a package. This
requires creating two files: an __init__.py file that declares the
directory as a Python package, and a riscwv class that inherits
from pyng.Overlay.

Creating a Notebooks Directory teaches the reader how to
build a notebooks directory. The notebooks directory holds the
.ipynb metadata files for Jupyter Notebooks, but in our tutorial
it also holds the RISC-V compilation script: A Makefile
for compilng RISC-V code, a reset.S assembly script for
initializing the RISC-V processor at reset, a riscv.ld linker
script describing the memory layout for the GNU linker tool.

The final section, Automating Intallation / Installing, walks
the reader through the step-by-step process of creating a
setup.py script that defines their PYNQ Overlay as a Python
package that can be installed using Pip. This section starts
by verifying the user work from the previous sections: The
notebook verifies that the RISC-V compilation files function
as expected. Second, the notebook notebook verifies that the
Overlay can be imported as a Python package by overriding the
Python Package search path. Finally, and finally the notebook
runs Pip and verifies that the overlay is installed correctly
post-installation.

5) Writing and Compiling RISC-V Code: The fifth and final
tutorial of the notebook teaches the reader how to compile
RISC-V code, run the resulting programs, and read results
from the processor memory.

The notebook starts by demonstrating how to write pro-
grams in assembly or C/C++, compile, and then read the
results back from memory. This process uses files uploaded
manually to the notebook directory and compiled using the

makefile from Section II-C4. RISC-V programs are uploaded
and run using the PYNQ Overlay class from Section II-C4.
Once a program is complete, the ARM processor can read the
results from the RISC-V memory space.

Finally, the tutorial introduces the development environment
described in Section II-A. Users are directed through installing
the IDE package using Pip. These final cells verify that the
user has completed the entire tutorial successfully.

III. RELATED WORK

We survey related work in three fields: Broswer-based IDEs,
computer architecture education, and soft-processor projects.
We demonstrate that there is a gape in these fields that is filled
by our work.

A. Broswer-Based IDEs

Browser-based simulation and development environments
have seen adoption in recent years. The most familiar example
is the mbed platform [7], though academic examples have been
created as well [10]. [11] creates a browser-based simulation
environment for MIPS. These environments allow users to
build, debug, and upload code from their browsers. Browser—
based IDEs minimize the installation process and reduce the
time to running code.

Our work is derived from PYNQ’s IPython-Microblaze
feature [8], which allows users to program PYNQ Microblazes
using Jupyter Notebooks. This feature allows users to write
C/C++ functions and call them directly from Python. Unlike
IPython-Microblaze we do not provide Python integration in
order to expose the complete RISC-V toolchain.

As a browser-based IDE, our tool has many of the same
features. Unlike the examples above, we provide documenta-
tion for adding new processors to our tool so that it can grow
and expand with the RISC-V community.

B. Computer Architecture Education

The MIPS32 ISA is pervasive in computer architecture
curricula. Recently there has been a movement to [12] the
RISC-V ISA with the publication of the well-known Patterson
and Hennessy book [6] for RISC-V.



With this movement we are presented with opportunities
for re-thinking old tools and integrating new tools into the
computer architecture curricula. For example, the 1owRISC
organization supported a Google Summer of Code project to
develop a RISC-V simulator [13] to complement the ubiqui-
tious MIPS-32 simulator, SPIM [14].

There is a need for easy-to-use RISC-V environments in
education. Our tool would work well in RISC-V curricula.
We target a low-cost PYNQ development board and provide
extensive documentation for building RISC-V FPGA projects.

C. Soft-Processor Projects

RISC-V is not the first soft processor architecture. MIPS32
is historically the most common soft-processor ISA. Open-
RISC [15], [16] has also been proposed as the open hardware
replacement for closed ISAs.

RISC-V is growing quickly and many groups have released
their RISC-V processors online as open-source repositories.
A considerable number of projects are academic: Taiga[17],
[18], BOOM [19], and rocket [2]. More targeted research
projects have tested security extensions [20], [21], [22] while
others have sought smallest implementation size [9], [23],
or highest performance [17]. Commercial projects address a
particular application, like Pulpino [24] or Orca [3], while
other commercial companies, like Roal.ogic, provide general-
purpose RISC-V IP RV12 [4]. Finally, some projects demon-
strate HDL languages like VexRiscV [5] (SpinalHDL) and
riscy (Bluespec). This proliferation of open-source RISC-V
projects has led to increasinly humorous names, like YARVI
(Yet Another RISC-V Implementation).

This proliferation of RISC-V projects is daunting for end
users. In this paper we present a framework for RISC-V
exploration that can potentially be used on all of these soft
processor processors. This framework includes a tutorial that
can be adapted for any RISC-V curricula. Our framework can
be used to explore the RISC-V ISA across languages, across
architectures, and across projects in one familiar environment.

IV. CONCLUSION

The RISC-V specification is a highly extensible Instruction
Set Architecture (ISA) standard for low-cost processors. This
extensibility has led to widespread adoption and many open
source projects. The number of RISC-V projects can be
daunting, however, and a tool is needed to help users explore
their options.

In this paper we demonstrated a tool for exploring RISC-V
soft-processor projects. Our tool provides a web interface for
writing, compiling, and running user code, standard tests and
benchmarks. Our tool is also flexible enough to handle inter-
project variations and deviations from the specifications.
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