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ABSTRACT
A common type of triangulation-based active 3D scanner

outputs sets of surface coordinates, called profiles, by ex-

tracting the salient features of 2D images formed from an

object illuminated by a narrow plane of light. Because a

conventional 2D image must be digitized and processed for

each profile, current systems do not always provide adequate

speed and resolution to meet application demands. To ad-

dress this challenge, a special purpose image sensor is being

developed. Using Compressive Sensing, this sensor will be

able to digitize compressed measurements of highly struc-

tured images, such as those formed in active 3D scanning,

at a rate that would represent the conventional equivalent

of 50G pixels/second. It is a significant challenge to pro-

cess such a high-speed data stream at rates approaching real-

time. Therefore, we present a single-chip FPGA design for

the extraction of surface profiles from a compressed image

stream originating from a 1024 by 768 pixel array at a rate

of 14K images per second.

1. INTRODUCTION

Triangulation-based active 3D scanners, or profile scanners,

are commonly found in manufacturing environments pro-

viding data for volumetric measurement, error-proofing in-

spection, robot guidance and statistical quality control. In

addition, with the emergence of low-cost 3D printing we

envision a growing demand for systems that can capture in-

formation required to duplicate existing shapes, and even

for control-system feedback to 3D printers themselves. Cur-

rent systems suffer from a significant performance limita-

tion; they are relatively slow compared to widely used 2D

line-scan systems. The goal of this project is to create a

system for profile-scanning that is capable of operating at

speeds and resolutions comparable to conventional 2D line-

scan technology, typically in excess of 10K lines/second.

Profile scanners use a structured light source and an im-

age sensor to capture information about the intersection of a

physical object and a narrow plane of illumination. Each im-

age produced by the camera is processed to extract a profile,
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Fig. 1. A scanner system for capturing depth information of

an object illuminated by a thin plane of light.

δ, a vector of elements representing the intersection of the

laser line with the object in columns of the pixel array. An

example scanner system is shown in Fig. 1, and an example

image of the object plane is shown in Fig. 2. Fig. 3 contains

a graphical representation of several consecutive profiles.

The optical system is configured so that the object plane

of the camera is coincident with the plane of illumination.

This is accomplished by orienting the plane of the image

sensor relative to the lens in accordance with the Scheim-

pflug principle[1]. Associations are collected between the

image and object coordinate planes of the focused optical

system, and used to solve for camera calibration coefficients.

Image coordinates associated with illuminated points of the

scene are transformed with these camera calibration coef-

ficients to form the measurements in the object plane. The

third dimension is generated by moving the object in a direc-

tion substantially perpendicular to the plane of illumination

while capturing profiles at regular intervals. Therefore, the

resolution along the axis of travel is determined by the speed

of the surface relative to the frame-rate of the image sensor.
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Fig. 2. Grayscale representation of an image signal X at

time t, created by the intersection of a thin plane of illumina-

tion and a metallic object. The laser line features are formed

by direct illumination of the object, and other features are

the result of laser speckle or indirect illumination.

Some applications require a 3D scanning system that can

accurately profile the surfaces of large fast moving objects.

Such systems must capture and process large images at high

speed to generate the hundreds or thousands of profiles nec-

essary for sub-millimeter spatial resolution. CMOS sensor

advances allow conventional image sensors to obtain frame-

rates of 3K to 5K frames per second (FPS) for medium sized

(512 by 512 pixels) bitmap images, with some speeds ap-

proaching 1B FPS for small (32 by 32 pixels) images [2].

However, in large image sensors, transferring the image in-

formation stored in the analog domain of the pixel array to

the digital domain of the image processor presents a signifi-

cant problem due to restrictions on the image sampling rate

caused by analog-to-digital conversion speed and off-chip

transmission bandwidth.

To address these challenges we apply signal processing

principles from Compressive Sensing (CS)[3]. CS is a rel-

atively new technique for sampling sparse signals at sub-

Nyquist rates. To date, CS has been used in a variety of

sparse-signal applications [4][5][6].

A recently developed image sensor combines the multi-

bit analog-to-digital measurement and compression steps of

the conventional data pipeline into a single stage that forms

the coefficients of a compressed measurement as part of the

sampling process. It applies certain principles of an exten-

sion of CS, called 1-bit CS [7] [8], to enable high frame-

rate transmission of a certain class of low information con-

tent image signals for off-sensor processing. We believe

that this image sensor can generate useful measurements of

laser-illuminated images at a rate that represents the conven-

tional equivalent of 50G pixels/second. Although this solves
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Fig. 3. Graphical representation of profile information δ ex-

tracted over three frame times.

the problem of ultra high-speed digital information capture

and transmission, it creates a second, equally challenging

problem, i.e. real-time processing of the output data stream

to extract profile information embedded in the compressed

measurements.

In this paper, we present a solution to the problem of

high speed feature extraction from the measurement stream

of a special purpose compressive image sensor. This work

demonstrates that it is possible to exploit the principles of

CS to improve the throughput of a class of image processing

problems characterized by extremely low information con-

tent image streams.

Major contributions of this paper:

• A method for extracting features from a compressed

measurement stream that has been formed by a spe-

cial purpose compressive sensor capturing images of

an object surface moving perpendicularly through a

narrow plane of illumination.

• A single-chip FPGA design for the real-time extrac-

tion of surface profiles from a compressed measure-

ment stream operating at 14K, 1024 by 768 pixel im-

ages per second.

• A working demonstration using MATLAB, a Xilinx

VC 707 evaluation board, and a PCI Express 2.0 link.

We begin with a brief overview of CS as it relates to our

work in section 2.1, and follow with a description of our

optimizations in section 2.2. These optimizations adapt CS

using specific knowledge of the 3D profile scanning appli-

cation domain. Section 3 describes our FPGA architecture,

and section 4 reports the area, timing, and throughput results

for this architecture. Finally, we conclude in section 5.

1.1. Notation

Throughout this paper, 2-dimensional arrays of matrices are

denoted by bold uppercase letters (e.g. ΦΦΦ), 1 dimensional

arrays of matrices are denoted by script (e.g. X ). Uppercase



letters are use to represent a single matrix (e.g. Φ), and cor-

responding lowercase letters (e.g. φ and x) may be used to

represent one vector. We use MATLAB style notation to re-

fer to rows, columns, and various two dimensional slices of

higher dimensional arrays (e.g. ΦΦΦ:,:,h,k is the (h, k) matrix

element of ΦΦΦ). Unless otherwise defined, italicized alpha-

betic characters denote scalars (e.g. M and N1).

2. COMPRESSIVE SENSING

2.1. Background

CS is a relatively new signal acquisition and compression

technique that has been the subject of much research inter-

est since it was initially described in the early 2000’s [3]. In

general, CS provides a mathematical framework for captur-

ing sparse or compressible signals at a sampling rate lower

than the Nyquist sampling rate. A complete introduction

to CS and its extension, 1-bit CS, is beyond the scope of

this paper. Instead we refer the reader to one of the many

papers that provide an introduction to this field of research

[3, 7, 9, 10]. However, in the interest of making subsequent

discussion somewhat self contained we provide some back-

ground that relates directly to the present discussion.

First, let the image signal captured by a column of our

image sensor be represented by x ∈ R
N and let the digital

measurement of the signal be represented by y ∈ {−1, 1}M .

In addition, suppose we know that x is K-sparse, i.e. it

only has K nonzero values or it can be adequately repre-

sented by K coefficients in some linear basis. Now, let x1

and x2 represent any of two signal vectors x1 �= x2 and

let y1 = sign(Φx1) and y2 = sign(Φx2) be their respec-

tive measurements using the measurement matrix Φ. Then,

y = sign(Φx), is a Binary ε-Stable Embedding of order K
for the K-sparse signal x if the normalized vector angle be-

tween any two signals is equal to the normalized Hamming

distance between their measurements, within some tolerance

ε [7]. This relationship can be expressed as follows.

dang(x1, x2)− ε ≤ dham(y1, y2) ≤ dang(x1, x2) + ε (1)

In 1-bit compressive sensing it has been shown that if

Φ consists of IID (Independent and Identically Distributed)

random variables drawn from certain known random distri-

butions and ε > 0, then y = sign(Φx) is a Binary ε-Stable

Embedding with probability Pr > 1− ρ for:

M ≥ 2

ε2
(Klog(N) + 2Klog(

50

ε
) + log(

2

ρ
)) (2)

Assuming constant error tolerance, Eq. 2 implies that it

is the information content of the signal, as represented by the

sparseness K, not the signal dimension N , that is the domi-

nate factor determining M , the number of bits necessary to

encode the signal x in the measurement y.
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Fig. 4. Graph of the X:,j,t column from Fig. 2

Methods to recover the signal x from the compressed

measurement y depend on the a priori knowledge that the

signal of interest is sufficiently sparse and uniquely repre-

sented in the measurement vector, i.e. there is a Binary ε-
Stable Embedding. General signal recovery methods have

been widely researched [8, 11, 12, 13]. These methods,

typically, involve a search for a maximally sparse signal x̂
that satisfies ‖Φx̂ − y‖2 ≤ τ , where τ is the noise toler-

ance. Iterative signal recovery methods are not practical to

implement for our application, given the overall dimension

of signal space and our throughput objectives. It may also

be noted that complete signal recovery is not possible be-

cause the sign(.) function discards the scale information,

in effect constraining any reconstruction of x to a spherical

sub-manifold in R
N .

Fortunately, complete recovery of the original image sig-

nal X is not necessary or even desirable in our application

since it decreases the maximum throughput of our system.

We observe that, given certain application specific optimiza-

tions, we can model the signal of interest in such a way to

make it nearly K = 1 block-sparse. This allows a computa-

tionally efficient search for signal model parameters repre-

senting a filtered signal Ẑ that satisfies the test of consistent

reconstruction.

2.2. Application Specific Optimizations

As shown in Fig. 2, the image of a scene illuminated by

a laser line projector ideally consists of a set of thick bright

line segments superimposed on a predominately black back-

ground. The thickness of these line segments are not always

uniform; as the scanned surface changes its optical prop-

erties the apparent thickness of the laser line can vary by

several pixels. Therefore, the center of the laser line is the

best estimate of the location of the object-illumination inter-

section since it is invariant to surface changes. However, in

practice, finding the center of the laser line from the maxi-

mum pixel intensity is problematic in the presence of typical

nonlinear effects such as laser speckle, which can shift the

maxima by several pixels. Moreover, laser light reflected,
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Fig. 5. Graph of the first derivative of columnX:,j,t in Fig. 4.

δj is measured from the midpoint between minima and max-

ima in the image.

scattered, and/or diffused by the surfaces in the scene may

interfere with line detection by illuminating other parts of

the object surface that are not in the plane of the laser but

are in the field-of-view of the camera. Features of this type

are called illumination artifacts. Fig 2 and Fig. 4 show typi-

cal characteristics of illumination artifacts.

To mitigate the effect of noise and illumination artifacts,

we modify the frequency response of the measurement ma-

trix to attenuate spatial frequencies associated with sensor

noise and illumination artifacts. Therefore, we form mea-

surement matrix Φ by multiplying a spatial filtering matrix

Ψ by a random basis matrix Θ. In practice the Ψ matrix

may be derived from a convolution kernel having finite sup-

port. We construct the random basis matrix Θ and the spa-

tial filtering matrix Ψ in a way that guarantees all elements

of Φ = ΨΘ, belong to the set {−1, 0, 1}, which is consis-

tent with the computational capabilities of our image sensor.

We use a spatial filtering matrix that approximates the first

derivative with respect to rows. By forming the measure-

ment matrix as the product of the random basis Θ and the

spatial filter Ψ, the image sensor encodes the first derivative

of the columns of the image, like shown in Fig. 5.

The advantages of this methodology are threefold. First,

filtering attenuates the influence of illumination artifacts and

noise. Second, the first derivative of the image signal is typ-

ically substantially sparser than the original image signal,

allowing the useful information of the laser line to be en-

coded in fewer bits. These characteristics are shown in the

difference between Fig 4 and Fig. 5. Finally, the center of

the laser line, and thus the position of the plane of illumina-

tion is better approximated from the coordinates of the top

and bottom edge of the bright line segment, as represented

by the maxima and minima in Fig. 5.

It is also advantageous to perform filtering in the other

two dimensions, i.e. in the horizontal, or j dimension of the

image, and in the temporal dimension of the data stream.

Consider that each point on the scanned surface is associ-

ated with a unique image column signal X:,j,t, where j is

the image column index at time t in the sequence. Since ob-

ject surfaces are generally piecewise smooth and continuous

over small 3× 3 neighborhoods, all 9 image signal columns

associated with the neighborhood are, with high probability,

closely correlated with each other. Given this, it is clear that

local neighborhood averaging, which represents a low-pass

filter, would be advantageous, functioning to attenuate the

high spatial frequencies present in image sensor noise while

leaving the signal information associated with object surface

coordinates substantially unchanged. Moreover, there is a

substantial computational advantage to be gained through

compressed measurement of the neighborhood average.

If 3 × 3 neighborhood averaging is performed in image

signal space, i.e. on the sensor, then measurement of the

3× 3 average signals can be stated as:

Y:,j,t = sign(

3∑
k=1

3∑
h=1

Φ X:,(j+h−2),(t+k−2)) (3)

Although theoretically possible, it is generally infeasible

to perform the spatiotemporal image averaging calculation

of Eq. (3) in the analog domain of an image sensor, since

it would involve complicated analog signal storage an pro-

cessing means that complicate the design of the pixel circuit,

thereby creating an undesirable tradeoff with respect to im-

age sensor resolution and pixel light sensitivity. However, if

we decompose Φ by rows into a 3 × 3 array, AAA, of 9 inde-

pendent terms from Φ, each with m non-zero rows, where

m = M
9 and AAA ∈ {−1, 0, 1}M×N1×3×3:

AAA:,:,1,1 =
(
Φ0m+1:1m,:

T 0 0 0 0 . . . 0
)T

AAA:,:,2,1 =
(
0 Φ1m+1:2m,:

T 0 0 0 . . . 0
)T

AAA:,:,3,1 =
(
0 0 Φ2m+1:3m,:

T 0 0 . . . 0
)T

...

AAA:,:,3,3 =
(
0 0 0 0 . . . 0 Φ8m+1:9m,:

T
)T

We observe that the measurement of the average signal

can be approximated by the sum of the signs of partial mea-

surements performed on the spatiotemporal neighborhood

under certain conditions, as stated below:

Y:,j,t ≈
3∑

k=1

3∑
h=1

sign(AAA:,:,h,k X:,(j+h−2),(t+k−2)) (4)

In words, given a sufficient number of samples M , the

summation of signs of partial measurements over a neigh-

borhood is approximately the same as the signs of measure-

ment of the neighborhood average.

In our image sensor we dispense with the needless multi-

plication of empty row vectors in Eq. (4) by folding Φ into a



3× 3 array of matrices that replaces AAA. This forms the four-

dimensional array ΦΦΦ = fold(Φ) ∈ {−1, 0, 1}m×N1×3×3.

On the sensor, the pixel array is divided into three in-

terleaved column control sets, allowing three different sam-

pling matrices from ΦΦΦ to be applied simultaneously to the

image signal. Additionally, the image sampling matrices are

changed as a function of the frame time t. In effect, a to-

tal of nine separate sampling matrices are used over three

frame times to form interleaved partial measurement vectors

YI according to:

YI
:,j,t = sign(ΦΦΦ:,:,(j mod 3+1),(t mod 3+1) X:,j,t) (5)

The output of our image sensor, as defined in Eq. (5),

consists of one m bit binary vector for each column of the

image on every frame time t.
As in other CS work [8], the first approximation of the

filtered image column vector Ẑ:,j can be formed from the

product of the transpose of the random basis Θ and the con-

catenation of measurement vectors over the 3×3 spatiotem-

poral neighborhood, as in Eq. (6) below.

Ẑ:,j = ΘT

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

YI
:,j−1,t−1

YI
:,j+0,t−1

YI
:,j+1,t−1

...

YI
:,j+1,t+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

However, if we fold the M × N matrix Θ by rows to

formΘΘΘ = fold(Θ) ∈ {−1, 0, 1}m×N1×3×3 a 3×3 array of

m×N1 matrices,

Then Eq. (6) can be restated as follows:

Ẑ:,j =

3∑
k=1

3∑
h=1

ΘΘΘ:,:,h,k
T YI

:,(j+h−2),(t+k−2) (7)

As we will show in the following hardware description,

the first summation operation of Eq. (7) can be efficiently

performed as a neighborhood-averaging operation on partial

sums of Ẑ:,j . In practice we have observed that, using a sur-

prisingly small number of samples, it is possible to capture

a digital approximation of a filtered image signal of suffi-

cient quality to be useful for purpose of estimating the sig-

nal model parameters of interest, i.e. the offset coordinates

of the illumination plane as it appears in our image.

3. FPGA ARCHITECTURE

This section describes the architecture for our FPGA system.

Our initial design space exploration was conducted using Vi-

vado HLS. As the design developed, we switched to Verilog

for the final design and demo. For our demonstration the

current system uses a Xilinx VC707 Evaluation board with

a XC7VX485T-2 chip and MATLAB performs the role of

the camera. We intend to move this FPGA system onto the

camera in the near future.

In our architecture, we make one final optimization that

affects ΘΘΘ. To simplify our logic, we replace the 0’s in ΘΘΘ
with values chosen randomly from {−1, 1}. This reduces

the multiplication in Eq. (7) to Hamming distance calcula-

tions performed between binary vectors.

3.1. Input and Output Interface

As described above, our current system uses MATLAB to

generate compressed signal batches for processing on the

FPGA. These images are transmitted over the PCI Express

(PCIe) bus using PCIe hardware available on the VC707 de-

velopment board and the Reusable Integration Framework

for FPGA Accelerators (RIFFA 2.0) [14].

In our demonstration, a set of laser-line images in MAT-

LAB are used to produce a batch of compressed images.

These images are exported out of MATLAB by the MEX

API and transmitted to the FPGA using RIFFA. In this setup,

MATLAB replaces the camera in Fig. 6. In hardware, the

RIFFA core provides this data to our FPGA design Input In-
terface. The Input Interface loads data into the Image Buffer
at the head of the FPGA image processing pipeline in Fig. 6.

The Output Interface stage transfers a finished profile,

δ, to the same RIFFA core. The RIFFA core transmits the

profile back to the PC via PCIe bus. Finally, the profile is

returned to MATLAB for analysis.

3.2. Memory Read

The Memory Read stage is the third stage of the FPGA pipe-

line. This stage is responsible for producing read addresses

for the Image Buffer and passing the read data to the Recon-
struction Stage. The Memory Read stage is also responsible

for signaling the end of a row, which resets the Reconstruc-
tion Stage and the end of a frame which generates a single

profile, δ, at the Output Interface.

3.3. Reconstruction Stage

The Reconstruction Stage reconstructs individual rows in Ẑ
from a set of three consecutive measurements, YI

:,:,t−1:t+1.

This stage is the core of our architecture, and where many

of our CS optimizations were targeted. The bulk of our Vi-

vado HLS design exploration focused on this unit and how

to efficiently accelerate image decompression and process-

ing, while minimizing routing overhead and area.

Our first design decision was to reconstruct all 1024 pix-

els in a row simultaneously. This approach has numerous

advantages: First, it matches the format of the data from

the scanner. Second, this approach minimizes control logic;
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Fig. 6. Overview of the image sensor and FPGA pipeline for decompressing and processing the sensor output.

the logic for reconstructing each pixel has hardwired inputs

from the image buffer and it’s respective ΘΘΘ:,:,h,k matrix. Vi-

vado HLS demonstrated that producing less than a full row

of data introduces far too much overhead, to the point where

the added complexity of 3×3 neighborhood convolution be-

comes unwieldy because additional logic is added to route

data from the correct ΘΘΘ:,:,h,k partition. These pitfalls are

avoided by reconstructing all 1024 pixels from a row in Ẑ
in parallel, and hard-coding connections to the ΘΘΘ and YI

memories to minimize overhead.

We begin with the hardware that produces each pixel.

Eq. (8) displays the summations necessary to calculate pixel

Ẑi,j at row i, column j in Ẑ.

Ẑi,j =

3∑
k=1

3∑
h=1

m∑
i=1

ΘΘΘj,i,h,k ⊗ YI
i,(j+h−2),(t+k−2) (8)

In words, the pixel Ẑi,j is equal to the sum of the hamming

distances between each of the threeYI
:,j,t−1:t+1 columns in 3

consecutive frame times, and their corresponding measure-

ment column in ΘΘΘi,:,h,k. Assuming each XOR-add in the i
summation is completed every cycle, in naive hardware this

summation will take 3× 3×m cycles.

A simple acceleration approach is to save two previously

reconstructed partial sums on DRAM or on-chip BRAM.

This reduces the latency by a factor of 3 by eliminating the

iterations dedicated to the k summation. However, at 8 bits

per pixel and a target rate of 50 Gpixels/second, the rate at

which pixels need to be read and stored substantially ex-

ceeds DRAM bandwidth. Alternatively, storing the data on

BRAM at 8 bits per pixel a 768 row by 1024 column image

takes 260 BRAMs per saved image. Saving two previously

reconstructed partial sums requires 520 of the total 1030 of

36 Kbit BRAMs available on the chip. While this BRAM-

based approach solves the aforementioned bandwidth prob-

lem, it clearly does not scale well; routing congestion caused

by loading large frames reduces the clock speed, and in-

creasing the image size is nearly impossible. Furthermore,

BRAMs for other modules, such as the RIFFA Interace, and

the Line Detector also contend for BRAM resources. Alone,

these modules consume a significant fraction of the design’s

power, and doubling or tripling the power consumption by

saving previous frames is undesirable.

Instead, we reconstruct three consecutive images simul-

taneously from compressed data saved in the Image Buffer
and combine the images to produce the output Ẑ. In contrast

to saving the previously reconstructed partial sums, this ap-

proach only consumes 14 BRAMs per image buffer. The

image buffer is replicated 3 times so consecutive images can

be accessed simultaneously.

One way to implement this simultaneous reconstruction

is to calculate each sub-pixel in the 3 × 3 neighborhood,

and then add the sub-pixels to produce the final output pixel.

This is implied in the order of summations in Eq. (8). Imple-

mented correctly, this approach reduces the number of com-

putations by sharing the sub-pixels of overlapping neighbor-

hoods. However, we found that this 9-input add was ineffi-

cient in terms of routing resources and chip area because

it requires 1024 additional adders. Instead, we calculate the

hamming distance of the 3×3 neighborhood before perform-

ing the summation over index i. This change is represented

by moving the index of summation i to the outermost Σ, and

is shown in Eq. (9):

Ẑi,j =
m∑
i=1

3∑
k=1

3∑
h=1

ΘΘΘj,i,h,k ⊗ YI
i,(j+h−2),(t+k−2) (9)

In hardware, the Hamming distance of a 3×3 neighborhood

is equivalent to unrolling the summations of k and h. This

is performed in a pipeline, with an initiation interval of 1.

The summation of h for a particular k = k0 ∈ {1, 2, 3} in

Eq. 10, is implemented in two 6-input look-up tables (LUT).

3∑
h=1

ΘΘΘj,i,h,k0
⊗ YI

i,(j+h−2),(t+k0−2) (10)

The subsequent summation of k adds together the per-frame

Hamming distances. The k summation is implemented us-
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Ẑi, j
h=1

3

∑
2 LUT 

h=1

3

∑
2 LUT 

Fig. 7. Pixel unit implementing Eq. (9). The summation of

h is implemented in two 6-input LUTs. The subsequent k
and i stages are implemented in DSP48E1 chains.

ing a DSP48E1 slice and summation of i which is also im-

plemented using a DSP48E1. Each of the aforementioned

DSP’s is configured in 4 SIMD fashion, executing 4 inde-

pendent 12-bit additions so that each DSP calculates 4 inde-

pendent output pixels. The connection between the k sum-

mation and i summation is made using optimized DSP-to-

DSP routing logic. This hardware is called the pixel unit,
and is shown in Fig. 7. This approach reduces the latency of

a single pixel by a factor of 9, to m cycles.

Finally, we further accelerate the Reconstruction Stage
by simultaneously reconstructing 4 rows in Ẑ. This replica-

tion is shown in Fig. 6. The reconstruction stage is followed

by the row buffer stage. This stage is responsible for taking

4 rows of data from the multiplier and feeding it one row at

a time into the line detector. It is implemented as a parallel-

load/serial-out shift register.

3.4. Line Detector

Extracting the profile δ for the current reconstructed image

uses 1D column-wise line detection, repeated for all image

columns to find individual δj values. As stated in section

2.2, the column Ẑ:,j is the reconstructed first derivative of

X:,j,t by the construction of the Φ. An ideal first derivative

column is in Fig. 5.

A common approach for line detection is using filters.

We have found that filters are adequate, but particularly no-

ise prone and cannot adapt to changes in line-width. Each

filter generates many candidate locations near the center of

the minima/maxima in Fig. 5. In the worst case, none of

these candidates can be clearly marked as center of the line

in the column. This problem is further compounded as the

line width changes in response to surface changes. To ad-

dress this, we have implemented a width-invariant line de-

tector, described in Algorithm 1. The value of W in the

algorithm is set by the operator, and logically represents the

maximum distance between any minima and maxima pair.

This algorithm operates on a column Ẑ:,j with output δj .

Algorithm 1: Width invariant line detector

Input: Ẑ:,j , buffer[W] initialized to 0

1: for all row in Ẑ:,j do
2: buffer[row%W ] = Ẑrow,j

3: current pixel = buffer[W/2]
4: if current pixel == max(buffer) then
5: max pixel = current pixel
6: max pixel row = row
7: else if current pixel == min(buffer) then
8: current Δ = max pixel − current pixel
9: if (current Δ ≤ max Δ) then

10: max δj = current Δ
11: δj = row +max row
12: end if
13: end if
14: end for

This algorithm is designed to recognize the maxima fol-

lowed by minima characteristic created by taking the first

derivative. The core of this algorithm is the if statement on

lines 4-7. These lines detect a local maxima within W pix-

els, inhibiting any false maxima. The if statement on line 7

captures the subsequent minima. If the maxima and minima

occur within W pixels, this detector will find and report that

result.

This algorithm has several benefits. First and foremost

it is invariant with respect to the width of the line. If the

width of the line, and thus relative location of the minima

and maxima are changed by the characteristics of the sur-

face, this filter will adapt because it does not depend on a

fixed number of taps. Instead, the value of W can be set

such that the minima value will always be reached before

the maxima value leaves the buffer. Since it is extremely un-

likely that another maxima will occur between the maxima

and minima, this detector will resolve the center of the line

with high probability. Second, this algorithm has the poten-

tial for higher resolution because it detects the minima and

maxima and returns the sum of the two rows. Dividing the

sum gives the center of the line with half-pixel resolution.

4. RESULTS

Our architecture was designed and implemented using Xil-

inx’s Vivado IDE, version 2012.4, with all synthesis and

place & route settings set to maximum effort. The utilization

results are shown in Table 1 while, timing, and throughput

results from this design are contained in Table 2. These re-

sults are reported from the auto-generated, post-place and

route results of the Vivado suite.



Table 1. Resource Utilization
Resource Quantity Used Percent Utilization

Slice 46836 61.70 %

LUT 110048 36.24 %

Register 154971 51.04 %

BRAM 272 26.40 %

DSP 2048 73.14 %

Table 2. Timing & Throughput Results

Clock Period 5.75 ns

Clock Frequency 174 MHz

Profile Rate 14.15K Profiles per second

Our current design reconstructs an image of dimensions

768 rows × 1024 columns and extracts the features of the

laser line to produce a 1024 measurement array, called a pro-

file. The parameter M for our architecture is equal to 576,

and m = M
9 = 64. Since all 9 pixels in a 3 × 3 neighbor-

hood are reconstructed simultaneously, the output interval of

the Reconstruction Stage is equal to the bounds of the sum-

mation of i in Eq. 9, or m cycles. On every output 4 rows

in Ẑ are produced. Together this corresponds to an average

output interval of m
4 cycles, or 16 cycles per output row. For

this set of parameters, the Reconstruction Stage completes

a single Ẑ frame reconstruction every 768 × m
4 cycles, or

12288 cycles per frame.

Finally, the input interval of the Line Detector stage is

equal to W , which has been set to 16. This matches the

output interval of the Reconstruction Stage, so the output

rate of the entire core is equal to one profile every 12288

cycles. The Profile Rate reported in Table 2 reflects this

result.

5. CONCLUSION

We have presented a design enabling a single-chip FPGA

device to operate in cooperation with a special purpose com-

pressive sensor to provide a system for extracting image fea-

tures from a measurement stream at a rate of 14K images per

second. The system is intended to address the digital-image

capture-rate limitation associated with a common class of

triangulation-based active 3D scanners. More generally, this

research demonstrates that, in certain application domains,

image feature extraction can be performed on the measure-

ments stream of a compressive sensor to realize a practical

throughput advantage, relative to systems employing con-

ventional methods of digital-image capture.
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