
Enabling FPGAs for the Masses

Janarbek Matai∗, Dustin Richmond∗, Dajung Lee†, and Ryan Kastner∗
∗Computer Science and Engineering, †Electrical and Computer Engineering

University of California, San Diego
{jmatai, drichmond, dal064, kastner}@ucsd.edu

Abstract—Implementing an application on a FPGA remains
a difficult, non-intuitive task that often requires hardware design
expertise in a hardware description language (HDL). High-level
synthesis (HLS) raises the design abstraction from HDL to
languages such as C/C++/Scala/Java. Despite this, in order to get
a good quality of result (QoR), a designer must carefully craft the
HLS code. In other words, HLS designers must implement the
application using an abstract language in a manner that generates
an efficient micro-architecture; we call this process writing
restructured code. This reduces the benefits of implementing
the application at a higher level of abstraction and limits the
impact of HLS by requiring explicit knowledge of the underlying
hardware architecture. Developers must know how to write code
that reflects low level implementation details of the application at
hand as it is interpreted by HLS tools. As a result, FPGA design
still largely remains job of either hardware engineers or expert
HLS designers. In this work, we aim to take a step towards
making HLS tools useful for a broader set of programmers.
To do this, we study methodologies of restructuring software
code for HLS tools; we provide examples of designing different
kernels in state-of-the art HLS tools; and we present a list of
challenges for developing a hardware programming model for
software programmers.

I. INTRODUCTION

FPGAs are a viable platform for accelerating computation-
ally complex applications from a variety of domains such as:
computer vision, digital signal processing, and networking.
Despite these benefits FPGA designers remain a small set
of domain experts with significant knowledge in hardware
description languages and underlying architectures. These,
along with the required domain specific expertise, are the main
road-blocks to new programmers wishing to develop FPGA
systems.

Currently, implementing an application on an FPGA is split
across two methodologies. The traditional way is using a hard-
ware description languages (HDL) such as Verilog and VHDL.
These languages largely operate at the register transfer level,
and require intimate knowledge of micro-architectural design
techniques. This low level style of coding requires significant
hardware design expertise and a long development cycles -
often orders of magnitude longer than software development
cycles [1]. These characteristics make HDLs an unsuitable
method for broadening the number of programmers who can
implement an application on an FPGA.

The second design methodology uses High-Level Synthesis
(HLS) tools. HLS tools allow designers to use high level
languages such as C/C++/Scala/Java. Recently, several HLS
tools have emerged from industry [2], [3] and academia [4]–
[6]. Most HLS tools accept “software-like” source code and
inline optimization directives as inputs. Optimization directives
inform the HLS tool about how to optimize parts of the source
code. In general, all HLS tools have similar optimization
directives with slightly different names. For example, pipeline
is a common directive in HLS tools. This directive can be
given as a pragma and performs instruction level pipelining
across loops or functions. In general, HLS tools promise

to increase the accessibility of designing on FPGAs to a
broader number of designers. However, in order to get a
good quality of result (QoR) from HLS, the designers must
write a restructured code, i.e., code that often represents the
eccentricities of the toolchain and requires deep understanding
of micro-architectural constructs. As noted in previous studies,
“standard”, off-the-shelf C code typically yields very poor QoR
that are orders of magnitude slower than CPU designs, even
with HLS optimizations [7], [8].

Restructured code is HLS code that is written to target
a specific efficient hardware implementation suitable to the
FPGA architecture and differs greatly from an initial software
implementation. Recent studies suggest that restructuring in-
put code is an essential step to generate an efficient FPGA
design [3], [7]–[11]. This means that in order to get efficient
designs from HLS tools, the users must write restructured code
with the underlying hardware architecture in mind. Therefore,
writing restructured code requires hardware design expertise,
and domain specific knowledge in addition to software pro-
gramming skills. The difficulty of writing restructured code
limits the FPGA application development to a select number
of designers. In other words, if we wish to increase open up
FPGA to a larger space of programmers, we must make HLS
tools more friendly to programmers that do not have substantial
amount of hardware design knowledge.

In the remainder of this paper, we discuss these problems
in more detail and propose a solution based on best practices
of using HLS. The specific contributions of this paper include:

1) A study on the importance of restructuring code to
obtain FPGA designs with good QOR.

2) Two common code restructuring techniques and their
impact on final FPGA design QoR for regular and
irregular kernels.

3) A list of challenges and possible solutions for devel-
oping a novel tool flow that opens up FPGA design
to a broader set of programmers.

The remainder of this paper is organized as follows:
Section 2 briefly introduces our approach. Section 3 applies
these techinques to two application areas. Section 4 describes
the performance of these applications. Section 5 presents a
list of challenges and possible solutions for developing a
programming model for software programmers. Related work
and conclusion are presented in Section 6 and Section 7.

II. CURRENT APPROACH

Recent state-of-the-art HLS tools reduce the effort reqired
to design FPGA applications. These tools eliminate the need to
design an architecture that specifies every excruciating detail
of what occurs on a cycle by cycle basis. In addition, HLS
languages substantially reduce the amount of code that must
be written for an application, and in theory enable any software
designer to implement an application on an FPGA.

Unfortunately, even a highly optimized “software” im-
plementation of an application will very likely not translate

Copyright is held by the author/owner(s).
1st International Workshop on FPGAs for Software Programmers
(FSP 2014), September 1, 2014, Munich, Germany.

15

into an optimized “hardware” implementation. Eking out the
maximum amount of performance requires significant knowl-
edge of the optimizations that the HLS tool can perform,
and basic theories on how the tool implements the design at
an architectural level. This is not to say that a programmer
needs to know every exact detail of the scheduling, binding,
and allocation algorithms in the tool; however, understanding
this general process provides great insight that can lead to
increased performance. This domain specific knowledge limits
the number of programmers that can build “optimized” designs
on an FPGA.

In this paper, we address the question: can a programmer
with limited hardware design experience write HLS code that
generates efficient FPGA designs? Evidence indicates that this
is not currently possible [3], [7]–[11].

To answer the question above, we present detailed code
restructuring methods in HLS code in Section III. We posit that
it is possible to generalize code restructuring techniques across
common kernels. This idea is inspired by the observations
that many applications share core computational kernels, and
they can be implemented efficiently on an FPGA with limited
insight by the programmer. In the remainder of this paper,
we dive deeper into this question and try to determine some
necessary steps to ease FPGA development for the masses.

Our work focuses on two different core kernels: regular
kernels and irregular kernels. Regular kernels are kernels
where the loop bounds are defined and have a direct memory
access (e.g., i is an index of A[i], and for loop which has
defined upper/lower bounds). Irregular kernels are kennels
where the loop bounds are dynamic such as loop checking
if some error threshold is met such as while(error < 0.5),
or kernel has indirect memory access such as A[B[i]] where
B[i] is an another array. Previous researchers have shown that
irregular programs are more difficult to optimize in HLS than
regular programs [12], [13]. We examine the code reconstruct-
ing techniques for both programs with detailed examples in
Section III.

III. RESTRUCTURED CODE

In this section, we demonstrate two code reconstructuring
techniques for HLS design based on our experience. We
will show that these restructuring techniques are not easy to
write for software programmers because they require low-
level hardware knowledge, yet produce optimal FPGA designs
in HLS. We present software code and reconstructed code
for each design study and elaborate on required skills and
knowledge for the design process.

A. Huffman Tree Creation

Huffman encoding is a popular lossless data compression
algorithm used in several compression engines such GZIP and
JPEG. In modern Huffman encoding, a compression engine
calculates a bit length of each symbol. Efficient bit length
calculation depends on generating Huffman trees for each text.
This section covers the restructuring necessary to transform
software-optimized C code for Huffman tree creation into
restructured code for current HLS tools.

Listing 1 demonstrates software code for Huffman tree
creation, and operates as follows: The input list is generated
from an arbitrary text source and contains a list of symbols,
sorted by the frequency of each symbol in the text. During tree
creation, two elements with minimum frequencies (lines 2 and
3) are selected to form a new intermediate node as in line 4.
The new node is added to the input list maintaining sorted

order (line 7). Figure 1 shows a complete Huffman tree where
and F and B have the minimum frequencies of 1. We select F
and B to make a new node which will be added to the list with
a frequency of 2. The above process continues until no element
is left in the sorted input list. The result is the Huffman tree,
where the bit length of each symbol is calculated by traversing
the tree. For example, F and B have bit length of 4 while A
has bit length of 2.

Create
Huffman Tree

S F

F 1

B 1

C 2

A 3

D 5

E 5

0

0

0

1

1 1

D E

2

17

F

A
1

0 1

B

C

4

7 10
0

Fig. 1. Huffman Tree: S=Symbol, F=Frequency

1) Software Code: Listing 1 presents pseudo code for a
subroutine of creating a Huffman tree. This pseudo code is
optimized for a CPU application, not for an FPGA design,
which leads to drawbacks when it is processed by HLS tools.
First, the while loop in line 1 is unbounded. Unbounded loop
operation prevents hardware pipelining in HLS.

Second, creating a new node (line 4-7) has to re-balance
or sort the input list in line 7. Given the code in Listing 1, it
is impossible to pipeline the computations in the while loop
since the function InsertToListInSortedOrder also contains
unbounded loops. Finally, the pseudo code is implemented as
a recursive function using dynamic memory allocation, which
is not possible in current HLS tools.

1 while (!isSizeOne(List))
2 Left = extractMin(List[0])
3 Right = extractMin(List[1])
4 Node = newNode(Left->freq + Right->freq)
5 Huffman->CurrentLeft = Left
6 Huffman->CurrentRight = Right
7 InsertToListInSortedOrder(Node)

Listing 1. Initial Huffman Tree Creation code as a software code

2) Restructured HLS Code: In this section, we present
detailed restructured code that creates efficient Huffman tree
based on our previous work [8]. Listing 2 presents the pseudo
source code that targets the architecture in Figure 2. Figure 2
presents the optimized hardware architecture to create the
Huffman tree. This hardware architecture store the interme-
diate nodes into an hardware array, BRAM.

In the software design, the Huffman tree generation code
adds the newly created node to the list maintaining sorter order.
The restructured code adds the new node to an empty array
and increases its index every time when a new node is created
in hardware architecture. This eliminates the computation
needed to sort the list on every new node. In addition, the
restructured code stores the Huffman tree in a data structure
that allows efficient Huffman bit length calculation. After
creating initial sub Huffman trees, tree information is stored in
three different structures named ParentAddress, Left and Right.
Here Left/Right store the symbol of left and right children.
ParentAddress stores the address of the parent of a location
where current pointer points. Using these structures, bit length
can be calculated in parallel.

In this code, the HuffmanCreateTree function has one input,
SF, and three outputs, ParentAddress, Left and Right. It defines
an array in BRAM to store the intermediate nodes in line 5.
Its size is size−1 because a Huffman tree with size of leaves

16

has size − 1 of intermediate nodes. Lines 6-7 define array
indices in the Left and Right BRAMs. The while loop in line
8 iterates over SF data structure to create the architecture
in Figure 2. Lines 11-16 create a left node using the current
element of SF if SF.F <= IN.F where SF.F and IN.F are
current frequencies of the SF and IN arrays. Lines 17-23 create
a left node using the current element of IN (line 20) and saves
the index (leftWA) to the ParentAddress. In the same way, the
lines 25-37 create a right node either using an element from
SF or an element from IN. The while loop in line 38 creates
Huffman sub tree if there are intermediate nodes remaining in
IN array. Both while loops (lines 8 and 38) can be pipelined
as shown in the code since they do not contain another loops
which are unbounded as in Listing 1.
1 void HuffmanCreateTree (
2 SF[size],
3 ParentAddress[size-1],
4 Left[size-1], Right[size-1]){
5 IN[size-1];
6 LeftWA = 0;
7 RightWA = 0; i,k,j=0;
8 while (i<size)
9 #pragma HLS PIPELINE

10 k = k +1
11 if (SF.F <= IN.F){
12 LeftWA = LeftWA + 1
13 Left[LeftWA]=SF[i].S
14 Freq = SF[i].F
15 i = i +1
16 }
17 else {
18 LeftWA = LeftWA + 1
19 Left[LeftWA]= n
20 Freq = IN[i].F
21 ParentAddress[j] = LeftWA
22 j = j +1
23 }
24
25 if (SF.F <= IN.F){
26 RightWA = RightWA + 1
27 Right[RightWA]=SF[i].S;
28 i = i +1
29 IN[k] = SF.F + Freq
30 }
31 else {
32 RightWA = RightWA + 1
33 Right[RightWA]=n;
34 IN[k] = IN.F + Freq
35 ParentAddress[j] = LeftWA
36 j = j +1
37 }
38 while (j < k)
39 #pragma HLS PIPELINE
40 //Create sub trees using IN
41 }

Listing 2. Restructured Huffman Tree Creation code for HLS design based
on the hardware architecture in Figure 2.

n1 n2 n3 n4 n5

2 4 7 10 17

S F

F 1

B 1

C 2

A 3

D 5

E 5

IN F

n1 2

n2 4

n3 7

n4 10

n5 17

Create Huffman
Tree Logic

1 2 4 4 0

F n1 A D n3

B C n2 E n4

0 1 2 3 4

Parent Address

Left

Right

Address

SF:

IN:

Fig. 2. Hardware architecture of HuffmanCreateTree module: SF is an array
storing symbol in S and frequency in F. IN is an array storing symbol in IN
field and frequency in F field.

3) Discussion: HuffmanTreeCreation code is an example of
irregular kernel that can be optimized in HLS when we write
the code in a restructured way. The restructured code creates
the Huffman tree in efficient way despite while loops that
depend on data and software code that has control dependent
statements.

This example shows that the optimization of a HLS design
still requires hardware expertise and tool knowledge to write a
program as shown in Listing 2. This restructured code gener-
ates more efficient hardware design based on the architecture
in Figure 2. The software code in Listing 1 is more friendly and
intuitive for software engineers, however, a HLS design based
on the software version performs poorly due to the nature of
the code structure.

B. Convolution

Convolution is the most common operation in many image
and signal processing applications. Sobel filter is one of exam-
ple of convolution. This section starts with presenting software
code for a Sobel filter. Then we show how to restructure the
software Sobel filter in HLS based on [14]. This restructuring
is general and can be applied to any convolution kernel.

1) Software Code: Sobel filter convolves a given input
image with two 3× 3 kernels as described by Equation 1. For
each kernel position, it calculates Dx and Dy where Dx and
Dy are derivatives for x and y directions. Dx is calculated
by multiplying each pixel value of the current 3 × 3 input
image window of with its corresponding value from Gx. Then
it takes the sum of the nine multiplications as a value of Dx,
and repeats the process for Dy . The value Dx +Dy is taken
as a new value of location at the center of kernel window.
Listing 3 shows one of the common ways of writing software
Sobel filter in C. The two outer loops iterate over every pixel
in the given input image (ignoring boundary conditions for
simplicity) and the inner two loops iterate over the values of
Sobel filter kernels.

Gx =

 1 0 1

2 0 2

−1 0 1

Gy =

 1 2 1

0 0 0

−1 −2 −1

 (1)

1 int image[IMAGE_HEIGHT][IMAGE_WIDTH];
2 for(int i = 0; i < IMAGE_HEIGHT; i++)
3 for(int j=0; j < IMAGE_WIDTH; j++)
4 for(int ro = -1; ro <= 1; ro++)
5 for(int co = -1; co <=1; co++)
6 D_x += G_x[ro][co] *

image[i+ro][j+co] + ...;
7 D_y += G_y[ro][co] *

image[i+ro][j+co] + ...;
8 image[i][j] = D_x + D_y;

Listing 3. Software code of Sobel Filter.

2) Restructured HLS Code: We must restructure this code
to generate an efficient hardware design. A common way of
implementing Sobel filter in hardware is through the use of
a line buffer and a window buffer. A line buffer is a group
of memory elements that is capable of storing several lines
of an input image. The number of memories, or rows in the
line buffer is defined by the height of the kernel. The Sobel
kernel has a size of 3 × 3 so we use three memories to
implement the line buffer. In HLS, we use a 2D array to declare
a line buffer, i.e., LineBuffer[3][IMAGE WIDTH]. The
window buffer stores the values in the current window and
it has the same size as the Sobel kernel (3 × 3). We use
registers to store window buffer values in order to access them
simultaneously in a clock cycle. This code is based on [14].

17

 Structured HLS Design — Convolution

27

Line Buffer

Window
Buffer

Kernel
Computation

New data

2 3

6 7

10 11

Window Buffer 2

4

8

12

1 2 3

5 6 7

9 10 11

Window Buffer 1

1 2 3 4

5 6 7 8

9 10 11 12

Line Buffer at time t

Input Image

1 2 3 4

5 6 7 8
9 10 11 12

13 14 15 16

Line Buffer at time 0

Line 1
Line 2

Line 3

1

5 2 3 4

1. 2. 3.

Fig. 3. Line buffer and window buffer example for convolution operation.

Figure 3 demonstrates how the line and window buffers
work. For simplicity, we assume that the input image size is
4 × 4. The input image is read pixel by pixel into the line
buffer. For example, pixel value 1 is copied to the first location,
pixel value 2 is copied to the second location of line buffer
line3, and so on. While copying the input data, line buffers
are shifted vertically, and the data from the most upper line
buffer is discarded. After time t, the line1, line2 and line3
buffers are filled. Since each line buffer is implemented a a
separate memory, the first window buffer 1 can be filled by
data from three line buffers in three clock cycles. The next
window buffers simply discards the first column and reads the
new column from the line buffers in one clock cycle, which
enables the data for one Sobel filter operation to be ready every
clock cycle.

The restructured HLS code for the architecture in Figure 3
is shown in Listing 4. The code from Lines 7-9 correspond
to the first stage. The code from Lines 11-13 correspond to
the second stage. In this stage, we design a way to read
data from three line buffers to window buffers in parallel. In
the last stage, we design hardware for shifting the window
buffer by reading a new column from the line buffers. This
process is shown in Lines 15-17. After the window buffer is
filled with necessary data, we call the sobel filter function
passing the filled WindowBuffer as an argument. The
sobel filter function source code is shown in Lines 21-27.
The sobel filter kernel is computed in one clock cycle using
pipelining.

1 int LineBuffer[3][IMAGE_WIDTH];
2 int WindowBuffer[3][3];
3
4 for(int i=0; i<IMAGE_HEIGHT; i++)
5 for(int j=0; j<IMAGE_WIDTH; j++)
6 #pragma pipeline
7 LineBuffer[0][j]=LineBuffer[1][j];
8 LineBuffer[1][j]=LineBuffer[2][j];
9 LineBuffer[2][j]=image[i][j];

10
11 WindowBuffer[0][0] = LineBuffer[0][j];
12 WindowBuffer[1][0] = LineBuffer[1][j];
13 WindowBuffer[2][0] = LineBuffer[2][j];
14
15 for(int k = 0; k < 3; k++)
16 WindowBuffer[k][2] = WindowBuffer[k][1];
17 WindowBuffer[k][1] = WindowBuffer[k][0];
18
19 sobel_filter(WindowBuffer);
20
21 sobel_filter(unsigned char window[3][3]){
22 #pragma pipeline
23 for(int i=0; i < 3; i++)
24 for(int j = 0; j < 3; j++)
25 D_x = D_x + (window[i][j] * G_x[i][j]);
26 D_y = D_y + (window[i][j] * G_y[i][j]);
27 sum = D_x + D_y;

Listing 4. Restructured HLS code for the Sobel edge detection.

3) Discussion: The source code shown in Listing 4 is
the restructured C code for the Sobel filter design. We used

the pipeline pragma in line 6 to parallelize everything under
line 6. In this implementation, we can fill the window buffer
in every clock cycle, and process the window buffer with
sobel function in next clock cycle. This allows us to achieve
a pixel rate of one per clock cycle. The pipeline pragma in
(line number 7) instructs HLS to process the code below in
every clock cycle. This is the optimal clock cycles achievable
by manual design assuming the design processes a new pixel
in each clock cycle.

Despite the fact that convolution kernels are regular kernels
(automatic compiler optimizations such as polyhedral opti-
mizations are possible) restructured code has its benefits as
shown above. The source code in Listing 3 and Listing 4 have
the same functionality, but result in very different hardware
implementations. We can only optimize Listing 3 by pipelining
most inner loop due to memory port limitation on image
variable. The memory access pattern of Listing 3 does not
allow for the outer loop to be pipelined. The restructured
code from Listing 4 achieves the optimal number of clock
cycles while the design from Listing 3 needs 67X more clock
cycles. Clearly, the code restructuring performed in Listing 4
is necessary to achieve an optimized hardware implementation.

An experienced HLS programmer would write restructured
code as in Listings 2 and Listings 4 as this is a standard way
to design efficient hardware. This way of thinking architecture
and coding is nontrivial task for software programmers. For
example, code in Listing 4 requires HLS programmers to think
about the hardware architecture at a clock cycle level such as
how data moves from input to line buffer, then shifting to
window buffer.

IV. EXPERIMENTAL RESULTS

In this section, we present area and performance results for
Huffman tree creation and Sobel kernel convolution. For each
kernel, we compare performance/area results of software code
and restructured HLS code. Software code is optimized with
HLS pragmas (e.g., pipeline) with minimal code changes in
order to make them synthesizable. In this work, Vivado HLS
2013.4 is used for the hardware implementations with target
device Xilinx Zynq FPGA (xc7z020clg484-1). All results are
obtained after place and route. In the following tables, we use
software design to refer a hardware implementation using the
initial software code, and we use restructured design to refer
the hardware implementation of the restructured code.

A. Huffman Tree Creation

We created a syntactic data using the LZ77 compression
engine with size of 536. Designs using software code and
restructured designs are optimized with HLS pragmas on top
of them. We performed minimal code restructuring to the
pseudo code in Listings 1 in order to make it synthesizable
with HLS. Table I shows area and performance results for the
Huffman tree creation. Clock cycles are measured from the
simulation of the design. Throughput is the number of Huffman
tree creations per second. Frequency is in MHz. The first row
shows results obtained by implementing the software design.
The second row shows the results obtained by implementing
the restructured design. The third row (Ratio) is the ratio
between components of software designs versus hardware
design. Larger (larger than 1) ratio means software design
is bad for slices, BRAM and clock cycles. Smaller (smaller
than 1) means restructured design is good for throughput
and frequency. The frequency of software design is little bit
better than restructured design due to limited parallelism in the
software design. BRAM usage is decreased from 9 to 2 in the

18

restructured design due to writing a restructured code that is
more hardware friendly.

TABLE I. HUFFMAN TREE CREATION.

Area Performance

Slices BRAM Clock Cycles Throughput Frequency

Software 295 9 7889921 18 145
Restructured 353 2 3142 39893 125
Ratio 0.83 4.5 2511 4.5e-4 1.16

B. Convolution

Table II shows performance area results for the convolution
designs. Software design tends to use 67 times more clock cy-
cles than the restructured design while both designs achieving
very similar frequency. As a result, the restructured design
has 67 times more throughput than the software design. The
software design uses less slices because of limited parallelism
and does not use any BRAMs in the logic due to the nature
of software code. In restructured code we stored three lines of
input image to line buffers which consumes three BRAMs.

TABLE II. CONVOLUTION.

Area Performance

Slices BRAM Clock Cycles Throughput Frequency

Software 472 0 20889601 6.2 129
Restructured 627 3 307200 417 128
Ratio 0.7 0 67 0.01 1.007

V. CHALLENGES

Today’s HLS tools are close to overcoming challenges of
manual hardware (HDL) design. This is due to result of more
than three decades of research. Despite this, HLS tools are
still the domain of hardware experts. In Figure 4, we show the
overview of a proposed tool chain to allow software developers
to use HLS tools more easily. In this section, we discuss some
challenges to be solved in order to realize this flow.

A. Restructured Code Generation

Most software engineers are not familiar with HLS coding
styles presented in Section III because it requires developers
to write restructured code targeting a specific implementation
and knowledge of the underlying FPGA. One way to make
the restructuring easier for software programmers is through
the use of automated compiler techniques and domain specific
HLS templates. Automated compiler equipped with automatic
parallelization and memory optimization techniques such as
Polyhedral models promise to efficiently generate optimized
HLS code from software code [15]–[17]. However, automatic
parallelization alone is not enough since some kernels require
creation of efficient hardware architecture.

We propose domain specific HLS templates ease generation
of restructured code for common kernels. Domain specific
HLS templates define an efficient hardware architecture for
certain classes of common kernels that have the same or similar
computational patterns. Common kernels with the same or
similar computational patterns are very prevalent in real world
applications, and some research has done to classify kernels
according to computational patterns [18]. Current classification
techniques mostly target general parallel programming prac-
tices (e.g., multi-core CPU). We can classify frequently used
kernels in FPGA applications according to hardware architec-
ture. For example, sliding window is a common architectural
pattern shared both by Sobel and Gaussian filters and both map

to the same hardware architecture, convolution, which can be
implemented as an HLS template.

While there is no universal way to classify/extract kernels
according to their computational/communicational patterns, we
purpose a solution with three steps:

1) Identify common kernels from applications from a
variety of applications

2) Classify these kernels according to their efficient
hardware architectures.

3) Make domain specific HLS templates for those ker-
nels based on their class of hardware architecture.

While having domain specific HLS template for every
kernel is not possible, having domain specific HLS templates
for the common kernels will ease the use of FPGA by software
programmers. Further research is needed to identify, classify
and making domain specific templates for the most common
kernels for HLS tools. These domain specific templates must
by tool independent and define underlying hardware architec-
ture in an efficient way. Domain specific HLS templates are
incorporated into the design flow to design kernels as shown
in Figure 4. The communication between these kernels are
discussed in next.

B. Complex Application Design

Real world applications are complex, and almost univer-
sally contain several computational kernels. Therefore, soft-
ware programmers must be able to connect and map multiple
kernels of an application on an FPGA. The main challenge
here is: What is the best way connect the kernels designed
with domain specific templates in HLS to facilitate task level
parallelism? State-of-the-art HLS tools provide interface di-
rectives such as ap fifo to specify a port as a FIFO, or
ap memory to specify a memory port. However, these kind
of low level interface optimizations require hardware domain
expertise. In general FPGA systems for applications such as
video processing, digital signal processing, wireless systems,
and data analysis rely on dataflow streaming architectures
[19]. The programming model for dataflow streaming pro-
grams differ significantly from traditional processor (both
CPU and GPU) implementations for software programmers.
An easy programming model is needed to allow software
programmers to exploit dataflow streaming architectures. In
this work, we propose an approach to provide communication
among kernels efficiently according to Pattern Description.
Pattern Description represents common programming models
such as streaming dataflow and bulk synchronous (CUDA
programming model) based on common parallel programming
patterns such as MapReduce, Partition which are known to
software programmers.

C. Design Space Exploration

Design space exploration (DSE) with HLS tools is an es-
sential feature for exploring the performance, area, and power
tradeoff of different architectures and underlying implemen-
tations. Currently, DSE with HLS is usually done manually.
Automatic, but efficient DSE for given code is needed to
allow HLS users to tailor hardware for their specific needs.
Since DSE is a difficult problem because of large search space,
blindly optimizing the code shown in Listings 1 and Listings 3
does not produce efficient hardware. In fact doing DSE on
the provided code will result excessive run-time for a single
run with current state-of-the-art HLS tools. Using restructured
domain specific templates as an input to DSE will allow
automatic and efficient DSE with HLS. This is due to the fact
that restructured domain specific templates efficiently capture

19

the hardware architecture. These hardware architectures are
represented by small number of restructured HLS codes. As a
result, domain specific templates reduce the size of the search
space.

D. End-to-End System Design

In addition to the programming model challenges presented
above, verification and communication with HLS kernel on
a real FPGA is essential. Current methods of verifying an
HLS core on a real FPGA involve several tool flows and
non-trivial IP cores such as, DDR controllers, PCI Express
Interfaces, and DMA engines to access FPGA memory from
an external processor. Using the vendor specific tools with
correct IP cores remains difficult even for hardware engineers.
One way to solve this problem is providing easy to use high
level communication framework between FPGA and host CPU
(or FPGA to FPGA or FPGA to Network). Open source
frameworks such as RIFFA provide a good abstraction for
software developers to access communicate with an FPGA
[20]. Integrating easy to use frameworks such as RIFFA with
HLS tools will allow easy verification of application code for
software developers.

DSL
Restructured

Code
DSL

Compiler
Application

Code

DSL HLS Templates

Computer
Vision

Linear
Algebra

Machine
Learning

Pattern Descriptions

Bulk
Synchronous

Streaming
Fork

and Join

HLS
Tools

Fig. 4. Design flow for software programmers using HLS templates
(restructured code) and parallel programming patterns

VI. RELATED WORK

There have been several recent case studies on obtaining
good QoR for FPGAs using HLS tools [3], [7]–[9]. These
works demonstrate that restructuring input C code for HLS is
an essential step for generating efficient FPGA design. These
works have focused on specific applications and restructured
the input C code with promising results.

Recently several works focused on automatically generat-
ing code (mostly optimized for memory and data usage based
on Polyhedral models) for HLS tools [15]–[17]. Polyhedral
models are promising way to automatically generate HLS code
for affine-programs. Polyhedral model transformations do not
work for non-affine programs such as those with indirect mem-
ory accesses (A[B[i]]) or control/data dependent executions
[12], [13]. Since polyhedral optimizations are applicable after
generating restructured code, above works are orthogonal to
our research.

Hardware construction languages such as Chisel [21] and
libraries from FPGA vendors (Xilinx OpenCL and Linear
algebra) provide a good first step towards making FPGA
designs more accessible. While experienced HLS users find
these libraries useful, it is difficult for software programmers
(still requires substantial hardware expertise) to use them since
they still require low level hardware expertise. In order to make
them useful for software programmers, higher level of libraries
which are easy to use for software programmers are needed.

VII. CONCLUSION

According to previous studies, results from HLS tools
are competitive with manual design techniques using HDLs.

However, this requires writing the input code in a way that
reflects domain specific hardware knowledge, which we call
restructured code. Code restructuring still remains the HLS
developer’s task and requires hardware expertise. In this work,
we presented an approach that promises easier code restruc-
turing easier for software developers. We first presented the
importance of code restructuring in HLS. Next, we presented
our proposed method based on domain specific HLS templates
and Pattern Description. As future work, we aim to automate
the process of writing restructured code by creating domain
specific languages and pattern descriptions for very large
applications which will enable FPGAs for software developers.

REFERENCES

[1] J. Bodily et al., “A comparison study on implementing optical flow
and digital communications on fpgas and gpus,” ACM Transactions on
Reconfigurable Technology and Systems, vol. 3, no. 2, p. 6, 2010.

[2] “Altera sdk for opencl.” [Online]. Available: http://www.altera.com/
[3] J. Cong et al., “High-level synthesis for fpgas: From prototyping

to deployment,” , IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 30, no. 4, pp. 473–491, 2011.

[4] A. Canis et al., “Legup: high-level synthesis for fpga-based proces-
sor/accelerator systems,” in 19th International Symposium on Field
Programmable Gate Arrays. ACM, 2011, pp. 33–36.

[5] A. Papakonstantinou et al., “Fcuda: Enabling efficient compilation of
cuda kernels onto fpgas,” in IEEE 7th Symposium on Application
Specific Processors. IEEE, 2009, pp. 35–42.

[6] T. S. Czajkowski et al., “From opencl to high-performance hardware
on fpgas,” in 22nd International Conference on Field Programmable
Logic and Applications. IEEE, 2012, pp. 531–534.

[7] J. Matai et al., “Designing a hardware in the loop wireless digital
channel emulator for software defined radio,” in 2012 International
Conference on Field-Programmable Technology (FPT). IEEE, 2012.

[8] J. Matai, J.-Y. Kim, and R. Kastner, “Energy efficient canonical huffman
encoding,” in 25th IEEE International Conference on Application-
specific Systems, Architectures and Processors. IEEE, 2014.

[9] J. Chen et al., “Fpga-accelerated 3d reconstruction using compressive
sensing,” in Proceedings of the ACM/SIGDA international symposium
on Field Programmable Gate Arrays. ACM, 2012, pp. 163–166.

[10] J. Matai et al., “Design and implementation of an fpga-based real-
time face recognition system,” in International Symposium on Field-
Programmable Custom Computing Machines, 2011, pp. 97–100.

[11] D. Lee et al., “High throughput channel tracking for jtrs wireless
channel emulation,” in 24th International Conference on Field Pro-
grammable Logic and Applications. IEEE, 2014.

[12] C. Chen, “Polyhedra scanning revisited,” in ACM SIGPLAN Notices,
vol. 47, no. 6. ACM, 2012, pp. 499–508.

[13] N. Vasilache et al., “Polyhedral code generation in the real world,” in
Compiler Construction. Springer, 2006, pp. 185–201.

[14] “Zynq all programmable soc sobel filter implementation using the
vivado hls tool.” [Online]. Available: http://www.xilinx.com/

[15] W. Zuo et al., “Improving high level synthesis optimization opportunity
through polyhedral transformations,” in International Symposium on
Field Programmable Gate Arrays. ACM, 2013, pp. 9–18.

[16] J. Cong et al., “Optimizing memory hierarchy allocation with loop
transformations for high-level synthesis,” in Proceedings of the 49th
Annual Design Automation Conference. ACM, 2012, pp. 1233–1238.

[17] C. Alias et al., “Optimizing remote accesses for offloaded kernels:
application to high-level synthesis for fpga,” in Conference on Design,
Automation and Test in Europe. EDA Consortium, 2013, pp. 575–580.

[18] K. Asanovic et al., “The landscape of parallel computing research: A
view from berkeley,” Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Tech. Rep., 2006.

[19] S. Neuendorffer et al., “Streaming systems in fpgas,” in Embedded
Computer Systems: Architectures, Modeling, and Simulation. Springer,
2008, pp. 147–156.

[20] M. Jacobsen et al., “Riffa 2.0: A reusable integration framework for
fpga accelerators,” Under review on Transactions on Reconfigurable
Technology and Systems.

[21] J. Bachrach et al., “Chisel: constructing hardware in a scala embedded
language,” in Proceedings of the 49th Annual Design Automation
Conference. ACM, 2012, pp. 1216–1225.

20

