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Abstract—Data clustering is a fundamental challenge in data analytics.
It is the main task in exploratory data mining and a core technique
in machine learning. As the volume, variety, velocity, and variability
of data grows, we need more efficient data analysis methods that can
scale towards increasingly large and high dimensional data sets. We
develop a streaming clustering algorithm that is highly amenable to
hardware acceleration. Our algorithm eliminates the need to store the
data objects, which removes limits on the size of the data that we
can analyze. Our algorithm is highly parameterizable, which allows
it to fit to the characteristics of the data set, and scale towards the
available hardware resources. Our streaming hardware core can handle
more than 40 Msamples/s when processing 3-dimensional streaming
data and up to 1.78 Msamples/s for 70-dimensional data. To validate
the accuracy and performance of our algorithms we compare it with
several common clustering techniques on several different applications.
The experimental result shows that it outperforms other prior hardware
accelerated clustering systems.

Index Terms—Online clustering, streaming architecture, hardware-
software codesign, FPGA, hardware acceleration, vector quantization

I. INTRODUCTION

Data clustering is one of the fundamental problems in data an-
alytics, pattern recognition, data compression, image analysis, and
machine learning [1]–[4]. Its goal is to group data objects that most
resemble one another into the same cluster based upon some metric
of similarity, or equivalently to separate data items that are relatively
distinct into separate clusters.

Clustering algorithms can exhibit vastly different performance
depending on the application, thus one must employ the algorithm
that best matches the characteristics of the data set. For example,
k-means is one of the oldest and simplest clustering algorithm.
It partitions input observations into k groups, each of which is
represented by a single mean point of the cluster. It is frequently
used, likely due to its simplicity, but its basic assumption limits the
separability of the data. Furthermore, it uses an iterative approach
that does not scale well. There are many variations of the k-means
algorithm e.g., [5], [6], and other algorithmic approaches, such as
BIRCH or DBSCAN [7], [8] developed to provide better performance
or work with datasets with different properties.

Increasing amounts of data are created in our daily life. These
“big data” sets can be large, high-dimensional, diverse, variable, and
delivered at high rates. More importantly, they are commonly time
sensitive. The data must be analyzed quickly to extract actionable
knowledge. In order to improve our ability to extract knowledge and
insight from such complex and large data sets, we must develop
efficient and scalable techniques to analyze these massive data sets
being delivered at high rates.

Online data clustering algorithms handle unbounded streaming data
without using a significant amount of storage. Thus, they provide a
fast technique that maps well to hardware. However, online clustering
has its drawbacks. Generally online algorithms look at the data only

once. While this limits the storage, and thus allows for scalability and
more efficient hardware implementations, it can reduce the accuracy
compared to other iterative approaches that perform multiple passes
over the data. For example, if the data characteristics evolve over
time, the online algorithms can get stuck in a local optimum. These
issues make it non-trivial to perform an accurate clustering using
online algorithms. Yet these algorithms have good scalability and
map efficiently into hardware.

We propose a multilevel, online data clustering method that is
accurate while providing a scalable hardware architecture that is
suitable for implementation in a heterogenous systems. Our method
approximates multiple subclusters from streaming data first, then
applies a problem specific clustering algorithm to these subclusters.
Each subcluster is represented using a set of centroids which are
estimated with different parameters independently. Each subcluster
module accepts streaming input data and keeps updating the centroids
set based upon the new data object. The next step to cluster these
approximated points maps centroids to clusters, which is determined
by the dataset properties. In our method, one cluster can have more
than one center points unlike the k-means algorithm which has a
single representative point per one cluster.

We carefully profile the algorithm and partition the workload
across hardware and software. The subclustering process handles
a massive amount of data and is a very demanding operation.
Therefore we optimize its hardware implementation to perform a one-
pass process while minimizing computation and space complexity.
The next module deals with a relatively small set of data, so it
can be processed either in software or hardware depending on a
system goals. Our final hardware design achieves high throughput
performance with reasonable resource utilization, which enables it to
scale towards large and high dimensional data sets. Our clustering
method outperforms the state of the art clustering algorithms in
software system [5] and FPGA implementations of heterogeneous
systems [9]–[11].

The primary contributions of this research are:
• A hardware friendly, multilevel, streaming clustering algorithm

that can handle large, high dimensional data sets.
• A hardware/software codesign method for streaming clustering

architecture that achieves high throughput and low resource uti-
lization across a wide set of algorithmic and system parameters

• Characterizing our system performance on a wide range of
applications including image segmentation and big data analysis
of real world datasets

The remainder of the paper is organized as follows. Section II
describes related work. Section III introduces our streaming data clus-
tering algorithm. We explain our hardware design and optimization
methods in Section IV, and show our experimental results in Section
V. We conclude in Section VI.



II. RELATED WORK

There are many clustering algorithm that target different data
set properties. Generally it is up to the user to choose the “best”
algorithm. Clustering algorithms can be largely divided into several
groups, and, in this paper, we consider three popular clustering
groups: partitioning, hierarchical, and density-based. We will focus
on three algorithms – one from each group (k-means, BIRCH,
and DBSCAN). And we specifically compare our work to existing
hardware accelerated approaches.

k-means is the most used partitioning method, which is commonly
known as Lloyd’s algorithm. It finds a set of centroids that represents
data clusters. It is the simplest method that is frequently used
in practical applications. There exist many variation of k-means
algorithm, such as k-median, k-medoids, or k-means++. However,
its inherent iterative solution for an optimal centroid set is highly
compute and data intensive. As such, there have been many efforts to
improve its computing performance [5], [6]. Hierarchical approaches
build a hierarchy of clusters based on their similarity, and split down
or merge up close clusters. The BIRCH algorithm is a well-known
hierarchical algorithm [7]. It minimizes the number of processing
passes and is capable of handling large datasets in a limited memory.
DBSCAN algorithm is a density-based clustering method [8]. It scans
dataset iteratively and finds a data group packed in high density. It
can cluster an arbitrarily density shape dataset and has a notion of
noise, which makes it robust to outliers.

Each algorithm has limitations. The quality of k-means is highly
dependent on the initial seed, and it is limited to clusters separable by
d-dimensional spherical densities. Its objective function is sensitive
to outliers, and its iterative operation makes it hard to scale. BIRCH
uses a two-pass process to reduce these issues, but it is sensitive to
parameters. And it uses a CF-tree data structure which is difficult
to implement efficiently in hardware. DBSCAN is also very sensitive
to parameters in terms of accuracy. This algorithm requires iterative
operation and needs data to stay in a memory, which makes hard to
map to hardware.

There are several projects aimed to accelerate clustering algorithms
using a custom hardware or heterogeneous system. Hussain et al. [12],
[13] accelerate k-means on an FPGA to perform gene analysis. They
compare their FPGA implementation with a GPU implementation,
and demonstrate speedup and improved energy efficiency on the
FPGA. However, the on-chip memory capacity limits the size of
data set to a small number of dimensions and a small number of
centroids. Lin et al. [9] present a k-means hardware accelerator that
uses a triangle inequality to reduce the computational complexity.
The accelerator can handle 1024-dimensional data from an external
DDR memory, but can only handle a small number (1024) of data
points. More recently, Abdelrahman et al. [11] explores k-means on a
shared memory processor-FPGA system. They partition the k-means
workload across CPU and FPGA. They achieve 2.9× speed up against
CPU only implementation and 1.9× faster than an accelerator alone
design. However, their work does not support high dimensional data
clustering and presents limited results for small numbers of clusters.

Some approaches merge hardware acceleration and data structure
optimizations. Chen et al. [14] implements a hierarchical binary tree
on an FPGA. The tree is generated by splitting the data set recursively.
Similarly, Winterstein et al. [10] use a kd-tree and with on-chip
dynamic memory allocation in an attempt to efficiently use memory
resources. While the accelerator traverses the tree, it updates a set
of centroids. This process reduces the computational load, however,
their design requires preprocessing to build a tree, and it does not
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Fig. 1. Our multilevel clustering algorithm in two stages. The first stage
clusters the same set of data multiple times (three subcluster modules in this
example) similar to k-means. It generates |L| = l centroids representing
l subclusters that is more than target clusters. Then, it clusters them using
an existing clustering algorithm to find a look up table, L×V that maps L
centroids to the target clusters V . Data points in subcluster c0 are clustered
to cluster 0.

handle a high dimensional data. In general, larger trees do not fit on
an on-chip FPGA memory, and traversing the tree requires frequent
irregular data accesses that limit performance. Our solution does not
have these limitations.

As a demand for clustering big data analysis increases, streaming
clustering algorithms have gotten more attention as they are more eas-
ily scaled to larger data sets. StreamKM++ [5] uses a non-uniformly
adaptive sampling approach for k-means to handle streaming data.
It uses a coreset tree data structure to bound the data set size while
streaming in data. Ailon et al. [6] suggests a streaming approximation
of k-means by expanding k-means clusteing algorithm in hierarchical
manner. These streaming methods provide a good approximation
of k-means and improves its performance by minimizing memory
accesses. However, these methods still have significant computational
complexity, which hinders their efficiency when mapped to hardware.
For example, the coreset tree data structure used in StreamKM++ is
hard to implemented in hardware. And the approximation algorithm
in [6] still has interation within its process. Our method approximates
input data into centroids more efficiently in a streaming way. We use
vector quantization [15] to build a streaming clustering architecture
on an FPGA. The approximation algorithm minimizes the computa-
tion and space complexity, which yields higher performance with less
memory space needed. Our architecture is described in more detail
the next section.

III. STREAMING CLUSTERING

In this section, we introduce our streaming clustering algorithm that
handles an unlimited amount of data while achieving high accuracy
and suitable for a wide range of applications.

A. Multilevel clustering

Our clustering method sets multiple representations for each cluster
(see in Fig. 1). The algorithm is divided into two main stages. We
call the first stage subclustering. In this stage, n input data are
clustered into l subclusters (k < l < n) in a similar manner to the
k-means algorithm. In the second stage, some of these centroids are
grouped together into a larger cluster. We call this reduction stage.
Each subcluster is generated from the same set of input data, but use
different parameters.
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Fig. 2. When a new data point comes in, a center point that locates close
moves toward the new point. This process keeps updating and moving around
this center point as a new data appears.

For example, three subcluster modules in Fig. 1 consider the same
data and generate k center points from each. These center points sets
compose the l centroids. These l centroids, L= {c0,c1, ...,cl−2,cl−1},
are clustered in reduction stage using a problem specific clustering
algorithm. Clustering algorithms are sometimes very sensitive on
choosing right parameters or initial seeding points. Our method can
reduce the dependency on a particular parameter by using these
different subclustering results. The final result is a single lookup table
that maps a set of centroids, {c0,c1, ...,cl−2,cl−1}, and corresponding
cluster ID, {0,1}. We have the final result clustered 0 or 1 either.
For example, based on this look up table, all data having c0 for the
nearest centroid are assigned cluster 0, and other data closer to c2
are clustered to cluster 1.

B. Streaming Subclustering

Subclustering and reduction are key operations in our method.
Subclustering stage processes a large size input data and gener-
ates centroids. Reducing handles a smaller set of approximated
centroids. Subclustering is very data intensive and computationally
demanding process while reduction is much lighter. To minimize
overall computation and space complexity for big data analysis, we
focus making the subclustering operation into a hardware friendly
streaming algorithm. It is based on a streaming version of vector
quantization, which is also closely related competitive learning or a
leader-follower clustering algorithm [16].

Vector quantization is used for data compression in signal pro-
cessing. It partitions the data into subsets (clusters), which are
modeled as probability density functions represented by a prototype
vector (centroid). The simplest version for vector quantization picks
data vector randomly from a given dataset. Then, it determines its
appropriate centroid, and updates the quantization vector centroid
based upon that new data object. This vector moves to the current
input points and it continues this process for the entire dataset. These
steps can be done in one pass and easily implemented in a hardware
architecture.

Our subclustering hardware module is built upon this streaming
vector quantization technique. We assume that the input data is
randomly ordered and stationary. Fig. 2 shows an example of how
our subclustering module works. If a new data point appears, the
closest center point to the new data moves slightly towards it. It keeps
updating and moving around this center point. Algorithm 1 presents
the streaming subclustering algorithm. Input x is a d-dimensional
streaming data point, and C is a set of current centroids for k clusters.
The output is the new set of centroids, C. First, a processing core
accepts input data, and it calculates distance from this current input to
each centroid of k clusters. This point will be assigned to the closest
cluster, and that cluster’s center point is updated to consider the new
input using the following equation:

cmt+1 = (1−α) · cmt +α · xt (1)

Algorithm 1: Streaming subclustering (x,C)

Input : x is a streaming input in d dimension,
C is a current set of centroids

Output: C is the latest set of centroids

1 Accept a new input x
2 Calculate distance between each center point c ∈C and the current

input x
3 Get a center point of the nearest cluster, cm.
4 Move cm closer to x
5 Return the current C

The step size for this update is decided by the current input, the
center point, and a learning rate, α . The learning rate is a weight of
the current input data where xt is a current input at time t, cmt is a
clustered center point for xt−1, and cmt+1 is an updated center point.

The initial seeding problem is an important issue for clustering
algorithms, such as k-means or vector quantization, to find a global
optimum. k-means++ defines the precondition problem in k-means
and suggests a solution for better accuracy. In other works, initial
centroids are randomly chosen in general. Our method accepts an
unbounded input stream, so we can feed subclustering modules a
random points or use a precalculated set from software side with a
small subset of data in first part of data sequence using k-means.

C. Reducing

The reducing stage is defined at a high level in (2). Its input is K

=
m⋃

i=1
Ki such that Ki = subclusteri(input) where m is the number of

subcluster modules; there are three subclusters in Fig. 1, for example.
The output is L×V , a lookup table that maps centroids to assigned
cluster IDs.

Reduction : K→ L×V (2)

A reduction stage can use any clustering algorithm depending
on applications or dataset properties. In this paper, we demonstrate
our system with three clustering methods for this stage: minimum
cost pick, DBSCAN, and BIRCH. Minimum cost pick is the simplest
method. Each subclustering module calculates a cost, an averaged
sum of distances between a centroid and data points within the
cluster. It compares cost values from every subclustering modules
and chooses a single set that has the minimum cost. In this case,
L = Ki and V = {1,2, ..., |V |} such that i = argmin

i
(costi). DBSCAN

and BIRCH algorithms cluster these centroids as input. DBSCAN
keeps scanning these points multiple times and finds associated data
points within a fixed distance. The distance is defined as a parameter,
epsilon, and if a cluster does not have enough number of elements,
minpts, it considers the cluster as a noise. In this method, L = K and
V = dbscan(K,epsilon,minpts). BIRCH generates a tree structure
based on two different distance metrics while scanning input data,
called CFtree. Then, it scans the initial CFtree and rebuilds a smaller
one, and it applies a clustering algorithm to all the tree leaf entries.
For BIRCH algorithm, L = K and V = birch(K, threshold).

D. Shuffling data

Our streaming subclustering module runs based on an assumption
that the order of incoming data is random and stationary. However,
it does not necessarily hold for all applications. Therefore we add
the ability to randomize the dataset. In a streaming process, the
processor does not have a control over input sequence coming that is
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Fig. 3. Overall system flow of our heterogeneous clustering system. Streaming
subclustering is the most computationally intensive function, so it is accel-
erated in hardware. The Reducing function can be placed in hardware or
software.

unbounded. To make this practical, we shuffle a data array within a
fixed window. This randomness makes our method more robust and
improves accuracy in final results.

Randomization also helps the streaming approach better approxi-
mate a non-streaming algorithm. For example, k-means keeps revisit-
ing input data until a solution converges into an optimal point. Instead
of scanning the entire dataset multiple times, which is expensive
in hardware, we divide the input dataset into several windows.
The algorithm scans each window only once, which approximates
scanning the original data iteratively. We can vary the size of the
window. A larger shuffling window provides a result that closer to
an offline method though it requires more hardware resources. Our
experiment shows a fully sorted dataset results in a higher error,
which can be significantly reduced through randomization to provide
similar accuracy as k-means.

E. Design parameters

Data clustering is employed in all kind of different data sets that
vary in dimension, the number of clusters, data size, data type,
or other attributes. For example, multimedia data commonly has
RGB 3-dimensional data, but other data can have significantly more
features [17]. Our proposed system accommodates different clustering
parameters for various applications.

We have several parameters to build a streaming subclustering
core on a hardware: dimension d, the number of clusters k, and
learning rate α . A streaming system does not have a limitation on data
size. So the dimension and the number of clusters mainly determine
throughput performance and resource utilization. Therefore, we focus
on optimizing a hardware core to handle different dimensions and
different numbers of clusters while retaining the maximum through-
put. The learning rate α affects the updating centroids operation.
We set different subclustering modules to run with different learning
rates. Clustering algorithms in reduction stage also has important
parameters, e.g. epsilon and minpts for DBSCAN. However, they
are highly application-specific and depend on data set properties, so
we do not discuss them. We present our experimental results with
different design parameters in Section V.

IV. SYSTEM IMPLEMENTATION

In this section, we describe our CPU-FPGA heterogeneous system
design. The input is an unbounded data stream, and output is a lookup
table that describes the centroids and clusters.

A. Heterogeneous system

The overall system flow consists of shuffling, streaming subcluster-
ing, and reduction (see in Fig. 3). According to our software profiling
results using example datasets, subclustering stage takes almost 90%
of total latency on average. Shuffling is less than 5%, and reduction
is around 7%.

We focus on accelerating the main bottleneck module, streaming
subclustering stage, and additionally implement minimum cost pick
and DBSCAN methods in reduction stage on an FPGA. Fig. 4
presents an accelerated core on an FPGA. Shuffling is implemented
in software because it is not a compute intensive module, and
its frequent data accesses limit it’s acceleration capabilities on the
FPGA. To communicate between CPU and FPGA, we employ RIFFA
framework [18] and connect our FPGA core to RIFFA with the AXIS
streaming interface.

B. Subclustering module

The Subclustering module processes the same input sequence
with different parameters multiple times. Each process is totally
independent, so they are highly scalable in hardware. Our streaming
approach minimizes computation complexity as well as hardware
resources and we parallelize these independent operations.

Fig. 5 presents the subclustering core. The accelerator core starts by
calculating the distance between the current input data object and the
centroid for each of the k clusters. We used L1 norm (i.e., Manhattan
distance) for our distance metric. This exposes significant instruction
level parallelism as the calculation performs an absolute difference
operation on the dimension of input data object and elements of the
centroid vector, and then sums these differences. More precisely it
performs a sum of absolute differences which maps in a very efficient
and scalable manner to an FPGA. The distance calculation is done in
a fully parallel manner. We perform complete memory partitioning
on the centroid points, i.e., they are stored in registers that can all be
accessed in one cycle to allow for high bandwidth accesses.

The entire core is parametrized. A user defines parameters, d,
k, α , and data type of the data objects. A data clustering core is
automatically synthesized based upon these parameters. The entire
process is fully pipelined. Every time a new input arrives, the core
continues processing and generates one output per input. It takes
d clock cycles (dimension of the data objects) to accept d data
objects. So the optimal pipeline initiation interval (II), i.e., our target
performance, is d clock cycles.

C. Reducing module

We implement the minimum cost pick and DBSCAN methods on an
FPGA for the reduction stage. The BIRCH algorithm uses a tree based
data structure that is non-trivial to be implemented on hardware, so
we leave that in software. Minimum cost pick simply compares cost
values from every subclustering modules and chooses the one set that
has the minimum cost value. This module is easily implementable in
hardware. The DBSCAN algorithm scans the dataset multiple times.
This iterative scanning operation causes high latency for a large size
datasets and uses many resources. To achieve high performance, it
requires intensive hardware optimization. However, since we handle
much smaller size data in reduction module than in the subclustering
module, it does not need high performance. We utilize an open source
code for DBSCAN [19] to synthesize a hardware architecture using a
high level synthesis tool. We optimize the code to use a FIFO module
to keep the associated candidate data point for a cluster, instead of a
linked list data structure originally used in software.
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V. EXPERIMENTAL RESULTS

A. Test environment

We evaluated our proposed design on a CPU-FPGA heterogeneous
system. Our test system has Intel i7 core 4 GHz and 16 GB DDR
in software and a Xilinx Virtex 7 FPGA device, XC7VX485T-
2FFG1761C, in hardware. We built an accelerator core using Xilinx
Vivado HLS 2016.4. We integrated the FPGA core with RIFFA [18]
to connect to a CPU and used the Vivado 2016.4 to generate a
bitstream file.

We verify our approach using several different application datasets
with different parameters. Table I presents eight example datasets:
synthetic datasets of different shapes in 2D and 3D dimensions
– blobs, moons, circles, and 3D clouds, datasets from from UCI
Machine Learning Repository (spambase and census 1990) [17], and
image segmentation examples in biomedical research – cell images in
1D and 9D dimensions [20]. Note that 3D clouds is a same synthetic
dataset used in [10], which is open source. The 9-dimensional cell
images data is generated by 3×3 convolutional windowing over
1-dimensional frame, and this convolutional segmentation method
clusters the image based on its local variance in neighbor.

We apply different clustering algorithms in the reduction stage
depending on the application. We use DBSCAN for blobs, moons,
and circles dataset, BIRCH for image segmentations, and minimum
cost pick for 3D clouds and high dimensional real world applications.

B. Accuracy

We compare our clustering results for the example datasets to other
clustering algorithms: k-means, BIRCH, DBSCAN, and streamKM++.
Table II presents the clustering results for 2-dimensional synthetic
datasets. k-means and streamKM++ methods group data points
centered around a single center point for each cluster, so they cannot
find true clusters in moons and circles. On the other hand, DBSCAN

TABLE I
TEST DATASETS

data set data size dimension (d) clusters (k) datatype
blobs 1,500 2 3 float

moons 1,500 2 2 float
circles 1,500 2 2 float

3D clouds 16,384 3 128 int
spambase 4,601 57 10 int, float

census 1990 2,458,285 68 10 int
cell image (1D) 131,072 1 10 int
cell image (9D) 131,072 9 10 int

is good at clustering these datasets. We choose this algorithm for our
reduction process, and it clusters these datasets correctly.

TABLE II
2D SYNTHETIC DATA CLUSTERING RESULTS. k-MEANS, BIRCH AND
streamKM++ HARDLY FIND RIGHT RESULTS FOR NON-SPHERICAL

DENSITY SHAPE DATASETS. OUR METHOD CLUSTERS THEM CORRECTLY.

k-means BIRCH DBSCAN StreamKM Ours 

blobs 

moons 

circles 

TABLE III
COMPARISON OF COST RESULTS

Kmeans StreamKM++ Ours
3D clouds 159.85 158.28 164.21
spambase 97.79 113.92 103.24

census 1990 37.36 37.47 37.41

We compare clustering costs – the mean of distances between each
centroid and data points in a cluster. The cost value is estimated from
an objective function value in (3) as k-means algorithm does. x’s are
n input data, {X1,X2, ...Xk} present k clusters, and each of them is
represented using a single center point, ci. A cost value is available
only for minimum cost pick method. Our clustering method shows
comparable results to k-means or streamKM++ in Table III.

argmin
X

k

∑
i=1

∑
x∈Xi

||x− ci||L (3)



TABLE IV
COMPARING SEGMENTATION RESULTS

Input Segmentation Cell area 
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We test our clustering method on image segmentation application.
The segmentation results are presented in Table IV. Input image
in this application is extremely noisy, and the image contrast is
very low. Since the input is blurred in low intensity, it is non-
trivial to separate particular pixel area and hard to achieve a good
quality of segmentation results. DBSCAN hardly finds cell area since
it is oversensitive to parameters. We use BIRCH algorithm in our
reduction stage.

1) Data Shuffling: We observe that shuffled data gives a better
approximation (close to k-means); the sorted data stream draws
centroids off from the optimal locations. Fig. 6 shows how data
shuffling process changes the final cost value. 3D clouds data is
fully-sorted set with some initial clustering. Without shuffling, its
streaming clustering results in a high cost value. We add the data
shuffling module and increases the window size gradually. The cost
value becomes lower and closer to k-means result. If the dataset is
already in random, it does not have much effect on the result, but if
it is sorted, then shuffling operation is necessary. Thus sorting can
be used depending upon the characteristics of the dataset.
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Fig. 6. The cost values for different shuffling window sizes. Result becomes
closer to k-means result with a larger shuffling window.

C. Performance and Resource Utilization

1) FPGA Core Design: A generated hardware core is fully
pipelined and runs in streaming manner. We set our target throughput
as input bandwidth, which is determined by the data dimension d and
the clock frequency. Each generated architecture can process data at
line rate, i.e., one new datum per cycle.

Resource utilization increases almost linearly with respect to the
data dimension or the number of target clusters. We test our design
with a maximum of 70 dimensional data. Targeting 10 clusters, it
consumes 50.73% of BRAMs, 0 DSPs, 23.73% FFs, and 44.08%
LUTs. To cluster 3-dimensional data into 128 clusters, it consumes
5.05% of BRAMs, 0 DSPs, 20.48% FFs, and 45.08% LUTs. We vary
the learning rate at powers of two (e.g., α = 1/8 through 1/64), which
is synthesized to a right shift operation; thus the hardware module
uses 0 DSPs. If we switch the parameter to an non power of tow, it
consumes a few DSPs.

Table V compares our FPGA core performance results to other
hardware accelerated works for k-means clustering algorithm [9],
[10]. Our hardware core is highly optimized for pipelining and
provides deterministic performance results decided by the data di-
mension d. It achieves more than 40 Msamples/s for 3-dimensional
streaming data running at 125 MHz. It shows higher FPGA through-
put than the results presented in [9], [10]. Considering the result in
[10] does not include a latency from preprocessing, our clustering
method outperforms their results, and can operate on unlimited size
of data.

2) Subclustering Module Analysis: The Subclustering stage is the
most computationally intensive and data demanding module in our
algorithm. We accelerate this module on an FPGA and evaluate
our design with varying parameters: the dimension of data d, and
the number of clusters k. It is based on a streaming approach, and
performance and resource results do not depend on the dataset size.
For the subclustering core analysis, we set a target clock frequency
at 250MHz to evaluate its maximum performance.

Fig. 7 and Fig. 8 present the throughput and resource utilization
results of a single subclustering core with different input data
dimension size. We increase the dimension gradually from 1 up to
70. The number of clusters, k, is 16 in this experiment. The target
throughput is determined by the input bandwidth, which is presented
in Fig. 7. High dimensional data needs more clock cycles to get input
point, so input bandwidth is inversely proportional to its dimension.
The processing core is able to achieve the target throughput in terms
of clock cycles. It can produce output in every input, but the design
complexity increases in higher dimensions. It results in running at
a lower clock frequency, so the throughput result is less than the
performance goal with higher dimensional data.
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Fig. 7. Throughput results by varying the data dimension. Input bandwidth
is the maximum throughput that we can achieve, which depends on data
dimension.

Fig. 9 presents throughput and resource results by varying the
number of clusters k. The data dimension in this experiment is fixed to
3. Ideally, the throughput result is determined by the data dimension,
so the throughput result should be same. However, as k grows larger,



TABLE V
FPGA CORE PERFORMANCE COMPARISON WITH OTHER FPGA IMPLEMENTATIONS.

data size
(N)

dimension
(D)

Clusters
(K) data type Max. capable

data size
Throughput
(Samples/s)

Resources
LUTs Registers BRAMs DSPs

Lin et al. [9] 1024 1024 10
8 bit

unsigned int 10000 200 K 44194 22521 198 -

Winterstein et al. [10] 16384 3 128 16 bit
unsigned int 65536 1.21M <(p=1) - - - -

4.96M <(p=4) 14167 24486 240 186

Ours Streaming
3 10 16 bit

unsigned int infinite
45.93 M 12785 9156 97 0

3 128 41.83 M 133817 144116 1045 0
70 10 1.83 M 136872 124383 104 0
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Fig. 8. Resource utilization by varying the data dimension. Additionaly
registers and BRAMs are required for the larger number of clusters k.

the design complexity increases sharply and clock frequency gets
lower. BRAMs used in the core module are partitioned completely.
So the k value mostly decides BRAM usage, which is shown to be
linear in Fig. 9.
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Fig. 9. Throughput and resource utilization results by varying the number of
clusters, k. The throughput result is mainly decided by the data dimension,
but increasing complexity affects to clock period. Resource usage linearly
increases according to k.

3) System performance: Table VI presents overall system perfor-
mance and resource utilization. The latency is measured for a window
data, and the system throughput is based on the total latency. This
includes data reading, which is the main bottleneck in the system
performance. The data reading operation is basically a file I/O process
to feed the system with a new data from external storage. It has much
potential to be improved in software side, but we do not discuss an
optimization as it is outside the scope of this paper. In spite of this
software latency, our system performance is 1.39 Msamples/s for 3-
dimensional data and much higher throughput up to 6.06 Msamples/s
when ignoring the read latency.

We compare the system performance with StreamKM++ which is
one of state-of-art software approaches for large data set and presents
the best throughput performance in software. For 9D cell image
dataset, it runs 21× faster with our end-to-end system, and the core
performance is up to 361× faster. For 68-dimensional census 1990
dataset, the system performance results in 131×, faster and the core
performance is 420× faster.

VI. CONCLUSIONS

We develop a hardware oriented streaming clustering algorithm
based on a multilevel clustering approach and its accelerated design
on a CPU-FPGA heterogeneous system. Our clustering algorithm is
able to process unbounded high dimensional streaming data while
presenting comparable clustering results to existing algorithms. The
proposed method approximates subclusters from a massive amount
of data based using a streaming vector quantization, and then applies
a problem specific clustering algorithm to these subclusters. We add
an array shuffling module in the streaming process, which gives a
better approximation to existing offline algorithms, such as k-means.
We partition system workloads into a software and hardware to
build a heterogenous hardware accelerated system. The experimental
results show that our generated FPGA core processes more than
40 Msamples/s for 3-dimensional data and 1.78 Msamples/s for 70-
dimensional data. The end-to-end system including all software pro-
cesses achieves 1.39 Msamples for the same 3-dimensional dataset,
which is 21× faster than a state-of-art software approach. Our
hardware core is highly parameterized, so it can be easily extended
for other applications. Our work is open-sourced at [21]
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