
Real-time 3D Reconstruction for FPGAs:
A Case Study for Evaluating the Performance, Area,

and Programmability Trade-offs of the Altera
OpenCL SDK

Quentin Gautier∗, Alexandria Shearer∗, Janarbek Matai∗, Dustin Richmond∗, Pingfan Meng∗ and Ryan Kastner∗
∗University of California, San Diego

Abstract—Embedding real-time 3D reconstruction of a scene
from a low-cost depth sensor can improve the development
of technologies in the domains of augmented reality, mobile
robotics, and more. However, current implementations require
a computer with a powerful GPU, which limits its prospective
applications with low-power requirements. To implement low-
power 3D reconstruction we embedded two prominent algorithms
of 3D reconstruction (Iterative Closest Point and Volumetric
Integration) on an Altera Stratix V FPGA by using the OpenCL
language and the Altera OpenCL SDK. In this paper, we present
our application and evaluation of the Altera tool in terms of
performance, area, and programmability trade-offs. We have
verified that OpenCL can be a viable method for developing
FPGA applications by modifying an open-source version of the
Microsoft KinectFusion project to run partially on a FPGA.

I. INTRODUCTION

Real-time 3D reconstruction creates a model of an object
or environment by stitching together depth information from a
camera or depth sensor at regular intervals. In 2011 Microsoft
Research released KinectFusion which performs real-time 3D
reconstruction with the movement of a Kinect around a scene.
We believe that KinectFusion should be embedded to allow
mobile devices to build applications atop this technology. We
used FPGAs to embed the algorithms for 3D reconstruction to
give us high performance and low power consumption, which
are both critical for mobile devices.

The Altera OpenCL SDK allows a programmer to use high-
level GPU code to generate an FPGA design with low-power
consumption and good performance. We will use the Altera
OpenCL SDK to compile GPU code from the open source
KinectFusion (Kinfu) to FPGA designs [1]. The real-time
constraints, high memory bandwidth requirements, and real
world applicability of 3D reconstruction make this application
a good choice for evaluating the Altera OpenCL SDK.

3D reconstruction is composed of three prominent algo-
rithms. Ray-casting is a well-studied algorithm for generating
graphics from surface information. The Iterative Closest Point
algorithm (ICP) can be used for camera-tracking, a broadly
applicable algorithm for graphics and vision applications.
Volumetric Integration (VI) integrates depth streams into a
single 3D surface and has not previously been embedded in
an FPGA device. We are focused on embedding ICP and VI
because they are the most intensive parts of the application.
Our primary contributions for this paper are the following:

• Evaluating a new tool/method for producing FPGA
designs and lowering the programmability barrier for
embedding applications

• Embedding prominent algorithms on FPGAs used in
3D reconsruction

• Designing an end-to-end low-power 3D reconstruction
heterogenous system which operates in real-time

Our evaluation of the Altera OpenCL SDK is informed
by our experience in porting 3D reconstruction algorithms
to FPGA while maintaining real-time performance. We will
present how well the Altera compiler performs on the FPGA
with the GPU code unaltered. Then we will walk through the
iterations needed to tune our OpenCL code to generate the
best performance on the FPGA. After we have described this
process, we will present our final evaluation of the trade-offs
in ease of programmability, performance, and area when using
the Altera OpenCL SDK.

We describe related work in section II. Section III describes
the 3D reconstruction algorithms. Section IV presents the
FPGA designs for ICP and VI. In section V we describe the
results and tradeoffs of our performance tuning. Section VI is a
discussion of the Altera SDK and we conclude in section VII.

II. RELATED WORK

The power and performance gains of using the Altera
OpenCL SDK have been studied in [2]. They describe their use
of the Altera tool for document filtering, an algorithm that has
previously been embedded on and is well-suited to the FPGA.
However, this work does not fully address the difficulties
of porting a complex GPU application to the FPGA. Our
work, in contrast, uses an application with challenging real-
time performance and high memory bandwidth requirements,
therefore it is a more realistic case study in evaluating the
performance and code portability of the Altera tool and it adds
more real-world value to the embedded application field.

An Iterative Closest Point algorithm on FPGA is presented
in [3]. Their algorithm is optimized for object tracking. It
uses a Region of Interest to filter the input data and a
subsampling process to segment the tracked object. From the
sampled data, they can run a type of nearest neighbor search
to find corresponding points. However KinectFusion works
on an entire scene instead of one object, therefore a ROI is
impossible to define and this algorithm is not applicable. Also



Kinect

Depth Map
Vertex Map
Vertex Map
Vertex Map

Normal Map
Normal Map
Normal Map

Iterative 
Closest Point

Transformation 
Matrix

Volumetric 
Integration

Volume

Ray CastingFinal Display

Fig. 1. General workflow of the Kinfu application. This shows the main
algorithms and data flow between the Kinect and the final image displayed to
the user. This entire process is repeated at most 30 times per second.

KinectFusion relies on dense tracking to enable features such
as foreground detection based on ICP outliers. Because of this,
ICP needs to run on all the original points, which makes a
nearest neighbor search not feasible. For this reason we kept
the original ICP algorithm from KinectFusion.

III. 3D RECONSTRUCTION ALGORITHMS

The general workflow of KinectFusion is similar to the
one described in [4], [5] and presented in Figure 1. First the
depth map is queried from the Kinect device and preprocessed.
The processed depth map is then used to generate a cloud
of 3D vertices with their normals (Vertex Map and Normal
Map). These maps are down-scaled twice and used by the ICP
algorithm to generate a transformation matrix, representing the
movement of the camera between the current and previous
frames. The VI algorithm uses this new location information
with the original depth map to integrate with the existing 3D
model (Volume). Then a Ray Casting algorithm computes the
final image to be displayed on screen. This entire workflow is
repeated up to 30 times a second.

The Iterative Closest Point algorithm we used is presented
in [4], [5] and summarized in Figure 2. The input data are the
vertex and normal maps of the current frame (Vi and Ni) and
of the previous frame (Vi−1 and Ni−1). Each point p of the
current map is projected into the previous camera coordinate
space, then into image coordinate space. This image point u is
used as a lookup into the previous vertex and normal maps. The
distance and angle between points p and u are then calculated
and tested against threshold values to determine if they are
corresponding or rejected as outliers. A point-to-plane error
vector is calculated for each point that has a correspondence.
These vectors are summed together to form a linear system,
solved on the CPU to update the global transformation matrix
between the frames. The initial transformation matrix is set
to the one of the previous frame, then updated at each
iteration. ICP operates on multiple resolutions of the input data
(640x480, 320x240 and 160x120).

Volumetric Integration integrates depth information from a
camera at regular intervals into a single representation of the
volume [6]. In Kinfu the VI algorithm updates a volume of
512x512x512 32-bit integers, where each integer is composed
of two values that represent the distance from a surface in

Read 𝑉𝑖(𝑝)

Projects 𝑉𝑖(𝑝) to image 
coordinates → 𝑢

Lookup 𝑉𝑖−1(𝑢)

Convert points to 
global coordinates

Compare distance

Read 𝑁𝑖(𝑝) and
𝑁𝑖−1(𝑢)

Compare angle

Compute 
transformation vector

For each point 𝑝

Sum all the 
transformation vectors

Fig. 2. This figure represents the various calculations performed for 1 iteration
of ICP. Vi and Ni are the vertex and normal maps for the current frame. Vi−1

and Ni−1 are for the previous frame. The first part of the algorithm is a loop
over all points from the input vertex map.

the volume and the error in the distance calculation. Updating
the volume requires the raw depth map from the Kinect
sensor, which is an array of 680x480 16-bit values, and
the transformation matrix and camera pose calculated from
the ICP algorithm. VI iterates through each of the integers
in the volume and updates the depth and weight values by
interpolating with the new depth map if the voxels intersect
with the camera pose.

IV. IMPLEMENTATION

We first ported the original CUDA implementations of
each algorithm to OpenCL by keeping the same structures
and features, with minimal differences. We consider that these
OpenCL versions are the baseline implementations. Then,
based on Altera’s Optimization Guide [7], we made incremen-
tal modifications. We present the ICP, then VI modifications.

A. Iterative Closest Point

1) Baseline implementation: The original GPU code for
ICP is divided into the search kernel that calculates the
correspondence between every points, and the reduction kernel
that sums the transformation of all the corresponding points.
The summation is done with a tree reduction that uses shared
memory and synchronization between compute units.

2) Kernel specialization: Originally, both kernels ran a
portion of the tree reduction, but we moved it entirely to the
second kernel (specialize kernels in Figure 3). This created a
bottleneck since the data had to be transferred through global
memory.

3) Loop unrolling and index dependency: The original
code used a double nested loop, where one index was function
of the other. This resulted in poor optimization from the
compiler. We removed the index dependencies and unrolled the
loops manually (as it used slightly less board space than using
OpenCL pragma unroll). Figure 3 presents the improvement
of both modifications separately.



0 10 20 30 40 50

Original GPU code

Specialize kernels

Remove loop index dependency

Tune reduction parameter

Unroll loop

Use channels & shift registers

Change data layout

Running time in ms

ICP performance after tuning the code

Search kernel

Reduction kernel

Fig. 3. Running time of 1 iteration of ICP at full resolution for the major
modifications made to the baseline GPU implementation. The modifications
are cumulative. The search kernel is the part of the algorithm that compares
every vertex to find corresponding points. The reduction kernel sums the
transformation vectors of all the points.

4) Tune reduction parameter: In the original GPU-style
tree reduction, 512 work-items ran an individual summation
of their own data, then a tree reduction was performed in local
memory to get the final sum. We reduced the number of work-
items to a number of 64 obtained experimentally to get much
better performance. However we ultimately replaced the entire
tree reduction as seen below.

5) Altera channels and shift registers: The GPU-style re-
duction was very inefficient on a FPGA, mainly because of the
large data transfer through global memory. The access time and
bandwidth limitation of this memory was slowing down both
kernels. To remove this unnecessary access, we used Altera
OpenCL channels. Channels are created in hardware as simple
FIFO queues that can transfer data between kernels in 1 cycle
per value. We used 27 of them to transfer the transformation
vectors of 27 values to the reduction kernel. We tried to
implement 27 independent reduction kernels, but found out
that a single one was performing much better. We implemented
it as an OpenCL task (single execution unit) to take advantage
of loop pipelining provided by the compiler. To remove the
inherent data dependency of a summation, we used a shift
register. Shift registers have to be implemented manually by
looping through the data, but this structure is recognized by the
compiler and implemented efficiently in hardware. We used a
32 elements-wide shift register, and we chose the depth to be
8 values based on performance estimations. These techniques
decreased the running time by 55%.

6) Other optimizations: a) We used compiler flags to opti-
mize floating-point operations by reordering. b) We simplified
the indexing of input arrays for the compiler to perform more
aggressive optimizations. c) We changed the layout of the input
data from Structure of Arrays to Array of Structures to take
advantage of a 512-bits wide global memory access. d) We
experimented with fixed-point arithmetic, however there is no
native support in OpenCL for this format and this resulted
in suboptimal design that did not fit on the FPGA board.
Also, this implementation of ICP performs operations on both
large and small numbers. This made it impractical to choose
appropriate precisions for the integer and decimal parts without
losing overall accuracy. e) We could not use SIMD operations
or duplicated compute units because Altera channels cannot
be vectorized, and because the ICP algorithm was using too
much area on the board.

TABLE I. PERFORMANCE OF THE ICP ALGORITHM FOR 1 ITERATION

Running time Area utilization
CPU (1 core) 29.7 ms
GPU 1.33 ms
FPGA (Baseline implementation) 49.9 ms 70%
FPGA (Tuned implementation) 3.22 ms 78%

B. Volumetric Integration

The main kernel the iterates through the volume and
updates the values that represent areas that the camera pose
intersects with the depth map. The distances from the surface
as well as the weights are updated with a simple interpolation.

1) Volume Access Restructuring: The access pattern of the
GPU code has work-items performing a maximum of 512
updates on the volume per frame. A for loop runs 512 times
for each work-item. We have experimented with restructuring
this code to allow 3D access and get rid of this for loop, which
is okay for GPU but ruins FPGA performance. This has not
yet been evaluated in terms of FPGA performance.

2) Other Optimizations: Since we could not restructure the
volume access, we tried to unroll the loop. Unfortunately,
unrolling the massive loop twice did not fit on the board.
We used compiler flags to optimize floating-point operations
and leveraged the Altera autotuner to perform combinations of
the kernel parameters like number of compute-units and work
group sizes, etc. The VI algorithm was also unable to have
multiple compute units because of the presence of branching
(if statements) in the kernel. Same with SIMD operations.

V. RESULTS

First we discuss the performance of each algorithm running
on its own, using a set of fixed input data. Then we discuss
the integration of the tuned implementations into the complete
Kinfu application. The FPGA benchmarks have been realized
on an Altera DE5 board with a Stratix V FPGA, the GPU
benchmarks on a NVidia GTX 760 and the CPU benchmarks
on an Intel i7-4960X at 3.60 GHz.

1) Iterative Closest Point: Table I presents the running
time of ICP for one iteration at full resolution on different
platforms. The original code takes less than 1.4 ms on a GPU,
but takes 49.9 ms on a FPGA. After tuning the code, we
decreased the time to 3.22 ms on the FPGA with a clock
frequency of 197 MHz. However we could not achieve one
cycle per element because of several factors, including reads
from unpredictable locations in global memory. We reduced
the impact of these reads by grouping the elements, reducing
the number of memory accesses, but it was not possible
to make use of local memory since there is no data reuse.
The execution pipeline is also delayed by multiple floating-
point computations with dependencies, including divisions
and square root functions. Another big limitation is the area
utilization. Because ICP uses around 78% of the board, we
could not integrate another algorithm on the same hardware.

2) Volumetric Integration: The baseline GPU implemen-
tation of VI ran on the FPGA in 100 ms, far from the GPU
version which executed in 4 ms. Each iteration of the algorithm
performs operations on 512 MB of data and there is little data
reuse to optimize memory access. Transferring the data back



Fig. 4. Kinfu application modified to run ICP on the FPGA. The application
runs at 26-28 FPS. (A) The Kinect RGB stream (not used). (B) The Kinect
depth map. (C) The reconstructed 3D model of the scene.

and forth from the FPGA to the GPU would take too long
and would require too much bandwidth (15 GB per second)
to justify any peformance increases from the Altera compiler
and the FPGA. The baseline version of volumetric integration
used 89% of the board logic, which precluded placing the VI
kernel on the same board as the ICP kernel.

3) Integration with Kinfu: We ran the Kinfu application on
the GPU and FPGA descibed above. Due to the area limitation
discussed before, we could only run one algorithm on the
FPGA (VI or ICP) and the rest of the project on the GPU. For
the VI algorithm, we realized that the data transfers between
the GPU and the FPGA would take a significant portion of
time, because the amount of data copied back to and from
the FPGA totals over 512 MB. Given that, achieving a real-
time solution for the resolution of 512x512x512 could not be
accomplished in real-time. We are still investigating what is the
maximal resolution we can support in our GPU-FPGA system
so that can have a real-time application. For ICP, we had to
copy the vertex and normal maps of two frames from the GPU
memory to the FPGA off-chip memory. Even with aligned
memory buffer on the host, this took around 18 ms and the
entire ICP process 37.8 ms. The entire project ran at 13.5 FPS
in average. To get a real-time performance, we removed the
high-resolution input data and ran 12 iterations at 320x240
and 8 iterations at 160x120. The memory transfer took around
5 ms and the ICP algorithm ran in 13.5 ms with no noticeable
accuracy loss. The entire system (ICP on FPGA, everything
else on GPU) was running at 26-28 FPS (see Figure 4).

VI. DISCUSSION

1) Altera OpenCL SDK: We used the Altera SDK ver-
sion 13.1. One problem we had with this tool is that we
had to use most of the available area on the FPGA for
only one algorithm in order to achieve real-time performance.
One reason is the lack of fixed-point arithmetic support that
makes it difficult to reduce the hardware utilization. Also, the
compiler creates unnecessary logic that could be avoided with
a manual RTL design. Finally, even though a good performance
can be achieved with the Altera tool, it still lacks fine-grained
control of the code to get the best performance and space
utilization. But since this tool is still in its early stages, there
is a good potential for improvement, and it will ultimately be
a very useful tool for software programmers to make use of
FPGAs without needing a deep knowledge of their technology.

2) Iterative Closest Point: By down-sampling the data for
ICP to achieve real-time (see Section V), we may have com-
promised some KinectFusion features relying on ICP outliers.
But if we could reduce the area utilization of ICP, we could
run some preprocessing algorithms on the same board to get

the input data directly in the FPGA memory and thus avoid
expensive transfers. This operation would allow us to get the
high-resolution data back in the ICP algorithm.

3) Power: By exporting a portion of the application to
an FPGA, we can expect a lower power consumption. The
GPU card that we used for our experiments has a peak
power of 170 W and a peak core frequency of 1033 MHz.
The maximum clock frequency of the FPGA for the ICP
algorithm is 197.5 MHz, so we can expect a much lower
dynamic power even with a high area utilization. Additionally
the FPGA hardware is optimized to reduce both static and
dynamic power. And if the Altera tool allows for more area
optimizations in the future, then we will be able to run more
algorithms on this hardware, including ray casting, drastically
reducing the power consumption for each of these algorithms.

VII. CONCLUSION

In this paper, we used the Altera OpenCL SDK to em-
bed 3D reconstruction algorithms on an FPGA. We achieved
real-time for Iterative Closest Point and used it to build an
heterogeneous version of the open-source project Kinfu. For
both algorithms however, we highly compromised the amount
of area we used on the board and had to tediously optimize
for the compiler, despite the promise of code portability that
the Altera SDK offered. We showed that the Altera tool might
still be an option to develop complex applications on FPGA
as it improves over time and addresses some of its issues.
We could also use the hardware designs and results with the
Altera tool to inform our choices for developing a more space-
efficient and powerful RTL design with both ICP and VI on
a single board. Our evaluation of the Altera tool is valuable
for the cause of moving towards cross-platform compatible
code and applications, yet there is much more work to be
done to realize the future of code reusability and performance
portability across hardware platforms.

REFERENCES

[1] Point cloud library (kinfu project). Online: http://pointclouds.org/
[2] D. Chen and D. Singh, “Invited paper: Using opencl to evaluate the

efficiency of cpus, gpus and fpgas for information filtering,” in Field
Programmable Logic and Applications (FPL), 2012 22nd International
Conference on, Aug 2012, pp. 5–12.

[3] M. Belshaw and M. Greenspan, “A high speed iterative closest point
tracker on an fpga platform,” in Computer Vision Workshops (ICCV
Workshops), 2009 IEEE 12th International Conference on, Sept 2009,
pp. 1449–1456.

[4] S. Izadi et al., “Kinectfusion: Real-time 3d reconstruction and in-
teraction using a moving depth camera.” ACM Symposium on
User Interface Software and Technology, October 2011. Online: http:
//research.microsoft.com/apps/pubs/default.aspx?id=155416

[5] R. A. Newcombe et al., “Kinectfusion: Real-time dense surface mapping
and tracking,” in IEEE ISMAR. IEEE, October 2011. Online: http:
//research.microsoft.com/apps/pubs/default.aspx?id=155378

[6] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques, ser.
SIGGRAPH ’96. New York, NY, USA: ACM, 1996, pp. 303–312.
Online: http://doi.acm.org/10.1145/237170.237269

[7] Altera opencl optimization guide. Online: http://www.altera.com/
literature/hb/opencl-sdk/aocl optimization guide.pdf

[8] “Implementing fpga design with the opencl standard,” White Pa-
per, Altera, Nov. 2013. Online: http://www.altera.com/literature/wp/
wp-01173-opencl.pdf


