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Abstract—Future CPU-manycore heterogeneous systems can
provide high peak throughput by integrating thousands of simple,
independent, energy-efficient cores in a single die. However,
there are two key challenges to translating this high peak
throughput into improved end-to-end workload performance:
(1) manycore co-processors rely on simple hardware putting
significant demands on the software programmer; and (2) many-
core co-processors use in-order cores that struggle to tolerate
long memory latencies. To address the manycore programma-
bility challenge, this paper presents a dense and sparse tensor
processing framework based on PyTorch that enables domain
experts to easily accelerate off-the-shelf workloads on CPU-
manycore heterogeneous systems. To address the manycore mem-
ory latency challenge, we use our extended PyTorch framework
to explore the potential for decoupled access/execute (DAE)
software and hardware mechanisms. More specifically, we pro-
pose two software-only techniques, naı̈ve-software DAE and
systolic-software DAE, along with a lightweight hardware access
accelerator to further improve area-normalized throughput. We
evaluate our techniques using a combination of PyTorch operator
microbenchmarking and real-world PyTorch workloads running
on a detailed register-transfer-level model of a 128-core manycore
architecture. Our evaluation on three real-world dense and sparse
tensor workloads suggest these workloads can achieve approxi-
mately 2–6× performance improvement when scaled to a future
2,000-core CPU-manycore heterogeneous system compared to
an 18-core out-of-order CPU baseline, while potentially achiev-
ing higher area-normalized throughput and improved energy-
efficiency compared to general-purpose graphics processing units.

I. INTRODUCTION

Manycore architectures integrate a large number of simple
cores within a single die using a tiled physical design method-
ology, and these cores are usually interconnected through a
packet-based on-chip network. Compared to general-purpose
multicores, the manycore approach can improve energy ef-
ficiency and throughput per unit area on highly parallel
workloads. Compared to application-specific accelerators, the
manycore approach can be tailored to accelerate a wider range
of applications. Early manycore research prototypes included
16–110 cores [1], [2], [3], [4], [5], [6] and manycore proces-
sors in industry now include 64–128 cores [7], [8], [9], [10],
[11], [12]. Recent research prototypes have scaled core counts
by an order-of-magnitude including the 496-core Celerity [13],
1000-core KiloCore [14], 1024-core Epiphany-V [15], and
4096-core Manticore [16]. General-purpose graphics process-
ing units (GPGPUs) also seek to integrate a massive number
of execution pipelines on a single die [17], [18], but GPGPUs
take a fundamentally different microarchitectural approach

from manycore architectures. GPGPUs group 16–32 execution
pipelines and shared local memory into tens of SIMT/SIMD
processors to amortize overheads with lock-step execution,
while manycore architectures turn each execution pipeline
into its own simple core with its own small local memory
to enable completely independent execution. Like GPGPUs,
manycore architectures are unlikely to completely replace
traditional multicore CPUs as standalone computing platforms.
Manycore architectures will likely remain as co-processors in
CPU-manycore heterogeneous systems. We identify two key
challenges to translating high peak throughput into improved
end-to-end workload performance on such systems.

Manycore Programmability Challenge – The flexibility
offered by manycore co-processors means programmers must
navigate a broad software design and optimization space. This
is compounded by the fact that manycore co-processors rely on
simple hardware that requires programmers to manage many
concerns explicitly in software. For example, some manycore
co-processors leverage scratchpad memories to create a parti-
tioned global address space (PGAS) instead of using hardware-
based cache coherence, and this requires programmers to
control data movement explicitly in software. In addition,
programmers must carefully consider work distribution, load
balancing, and on-chip network congestion. Compared to other
architectures that have been studied extensively, the software
stack of CPU-manycore heterogeneous systems remains less
explored.

A promising approach to addressing the manycore pro-
grammability challenge is through high-level libraries that pro-
vide ready-to-use hand-optimized operators embedded within
a high-level language. GPGPUs now provide many such
libraries including CuPy [19], PyTorch [20], TensorFlow [21],
and cuGraph [22]. In this work, we demonstrate the potential
for a high-level library approach to address the manycore pro-
grammability challenge by extending the PyTorch framework
for both dense and sparse tensor processing on a representative
CPU-manycore heterogeneous system with a RISC-V many-
core co-processor. Our extended PyTorch framework currently
provides over 100 operators that leverage both a traditional
optimized data-parallel approach (as in GPGPUs), and novel
programming models and optimizations enabled by the unique
features of manycore co-processors. For example, we propose
a new cyclic bank sparse row sparse matrix format and
padding technique that optimizes the data layout for manycore
co-processors with global caches and memory controllers at
the edge.
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Manycore Memory Latency Challenge – Memory latency
hiding is now at the center of modern microarchitecture design
as the performance gap between compute and memory contin-
ues to increase. Multicore CPUs rely on complex out-of-order
execution to hide memory latency, while GPGPUs rely on ex-
treme temporal multithreading with fine-grain context switch-
ing to also hide memory latency. Both of these techniques
require extensive hardware resources and are not applicable
to the simple cores used in manycore arechitectures. Stall-
on-use, which allows independent instructions to be issued
while a long-latency memory instruction is still pending [23],
[24], is a lightweight mechanism to enable memory latency
hiding in simple in-order cores. However, our results show
this technique alone cannot fully resolve the memory latency
issue, and it still dominates the execution time of many-
core co-processors for many critical PyTorch operators (e.g.,
matrix multiplication, 2D convolution, sparse matrix-vector
multiplication, and matrix-vector multiplication). Moreover, as
manycore architectures generally adopt a mesh-like on-chip
network topology, both network bisection bandwidth and the
bandwidth to higher levels of the memory hierarchy become
scarcer when scaled to future manycore architectures with
thousands of cores, leading to increased network congestion
and memory access latencies.

Decoupled access/execute (DAE) architectures have been
proposed in the literature to aid memory latency hiding by
splitting one program into two instruction streams, an access
stream and an execute stream [25]. The access stream contains
all instructions related to accessing memory, and the execute
stream contains the remaining instructions for computation. If
the access stream can run sufficiently far ahead, the execute
stream will no longer stall due to load-use dependencies. In
this work, we use our extended PyTorch framework to explore
DAE in the context of the target manycore co-processor. In
Section IV, we propose two software-only techniques, naı̈ve-
software DAE and systolic-software DAE: naı̈ve-software
DAE pairs an access core with an execute core interconnected
through software queues allocated in each core’s scratchpad
memory, while systolic-software DAE exploits data reuse to
share one access core across multiple execute cores. In Sec-
tion V, we propose combining lightweight access accelerators
with our software techniques to further improve area normal-
ized throughput. Our evaluation on several important PyTorch
operators shows software/hardware co-design to enable DAE
programming can achieve up to 1.32× throughput improve-
ment compared to an aggressive data-parallel baseline.

In Section VI, we evaluate three real-world workloads using
the extended PyTorch tensor processing framework includ-
ing: a dense residual neural network for computer vision,
a dense deep-learning autoencoder-based recommender sys-
tem for movie recommendations, and a sparse local graph
clustering system based on an iterative shrinkage-thresholding
algorithm for personalized page ranking. We execute the
PyTorch CPU software natively and co-simulate the PyTorch
manycore software on a detailed register-transfer-level model
of a 128-core manycore co-processor with 32-bit RISC-V
cores and a high-bandwidth main-memory system. Our results
suggest these workloads can achieve approximately 2–6×
performance improvement when scaled to a future 2,000-core
CPU-manycore heterogeneous system compared to an 18-core
out-of-order CPU baseline. At the same time, we argue that

the manycore approach can enable higher area-normalized
throughput and improved energy-efficiency compared to GPG-
PUs.

The primary contributions of this work are: (1) we extend
PyTorch to enable optimized dense and sparse tensor process-
ing on CPU-manycore heterogeneous systems with minimal
modifications to existing workloads (Section III); (2) we pro-
pose two software-only techniques, naı̈ve-software DAE and
systolic-software DAE, to enable access/execute decoupling in
the context of a manycore co-processor (Section IV); (3) we
propose to combine lightweight hardware access accelera-
tors with both software schemes to further improve area-
normalized throughput on the target CPU-manycore hetero-
geneous system (Section V); (4) we conduct an end-to-end
evaluation on three real-world tensor workloads to demonstrate
the promise of the proposed framework (Section VI). While
we conduct our studies on a specific manycore architecture,
our techniques can be broadly applied to any manycore
architecture that allows direct core-to-core communication.

II. TARGET CPU-MANYCORE HETEROGENEOUS SYSTEM

Although the manycore software and hardware design space
is broad, there are several common features including rela-
tively simple cores, mesh-based on-chip networks, software-
managed memory systems, and low-level software APIs. In
this section, we describe an early version of the HammerBlade
(HB) architecture [26] that captures these common features.

A. Target System Hardware

The HB manycore architecture includes hundreds of in-
dependent cores with simple scalar pipelines, low-latency
software-managed scratchpad memories, and support for in-
teger, floating-point, and atomic memory instructions. Cores
communicate over the memory-mapped 2-D mesh on-chip-
network (OCN), and adopt stall-on-use for exploiting pipeline
parallelism and memory latency hiding. In addition to the
scalar cores, there is a stand-alone host CPU that manages
execution. Fig. 1 presents an architectural diagram of a small-
scale HB CPU-manycore heterogeneous system.

The HB manycore memory hierarchy has four levels:
DRAM; a banked, last-level cache (LLC); inter-core scratch-
pad(s); and a core-local scratchpad. The core-local scratchpad,
remote scratchpads, caches, and other network locations are
mapped to non-intersecting regions of a core’s address space.
Consequently, the HB manycore architecture exposes a PGAS-
like memory model with software control over data placement.

B. Target System Software

The HB manycore architecture provides a kernel-centric
programming abstraction, similar to CUDA. Kernel code is
written from the perspective of a single thread executing on
a core. Kernel execution and scheduling is managed through
runtime software on the host processor. This provides a
SPMD-like execution model. Unlike CUDA, the target sys-
tem software supports remote store programming [27], which
allows a core to perform remote stores into any other core’s
scratchpad.
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Fig. 1: Target CPU-Manycore
Heterogeneous System Hardware –
(a) target system includes a CPU
with its own attached DRAM and a
manycore co-processor also with its
own attached DRAM; (b) manycore
co-processor includes 16×8 simple
cores (C) and 32 last-level cache (L)
banks interconnected via mesh-based
on-chip network; (c) each core is a
RISC-V RV32IMAF processor
(RV32) with instruction cache and
4KB scratchpad memory.
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C. Manycore Challenges
We identify two key challenges to realizing the promised

peak throughput of CPU-manycore heterogeneous systems.
Manycore Programmability Challenge – Similar to other

manycore architectures, the target manycore architecture ex-
poses low-level hardware details to the software stack. This
requires programmers to manage many concerns explicitly. In
addition, programmers must carefully consider work distribu-
tion, load balancing, network congestion, and even instruction
cache pressure. Facing vast options and a broad software
design space, programmers can struggle to quickly develop
optimal implementations.

Manycore Memory Latency Challenge – Memory la-
tency hiding is critical to modern microarchitectures as the
performance gap between compute and memory continues to
increase. This memory wall has a more significant impact on
manycore architectures for two reasons: (1) with a strong em-
phasis on area efficiency, the cores in a manycore architecture
cannot leverage traditional complex hardware mechanisms for
memory latency hiding (e.g., out-of-order execution, fine-grain
multithreading), and have to rely on lightweight approaches
such as stall-on-use; and (2) manycore architectures almost
always adopt a mesh-like topology for their OCNs. As we
scale to large-scale manycore architectures with thousands of
cores, both mesh bisection bandwidth and mesh perimeter
bandwidth to higher levels of the memory hierarchy scale
slower (i.e., linearly) than the number of cores (i.e., quadrati-
cally). Scarce bandwidth can easily lead to severe congestion
increasing overall memory access latencies.

III. A TENSOR PROCESSING FRAMEWORK FOR
CPU-MANYCORE HETEROGENEOUS SYSTEMS

PyTorch [20] is a widely adopted open-source tensor pro-
cessing framework that provides an easy to use Python fron-
tend for highly optimized tensor operators implemented in
a low-level C++ ATen library [28]. In this section, we first
present our tensor processing framework for CPU-manycore
heterogeneous systems developed from PyTorch. We then eval-
uate and analyze a set of representative operators with micro-
benchmarks on the target system to identify performance
bottlenecks.

A. PyTorch on CPU-Manycore Heterogeneous Systems
We extend PyTorch and build an open-source tensor pro-

cessing framework for CPU-manycore heterogeneous systems
to address the manycore programmability challenge. PyTorch’s

Python-level operators are platform agnostic; a dynamic dis-
patcher in ATen chooses the appropriate implementation for
execution at runtime. The actual ATen operators can be either
platform agnostic or platform specific. Platform specific imple-
mentations are grouped into backends (e.g., a CPU backend
or a GPGPU backend). Platform agnostic operators are part
of the CPU backend as well. New platforms can be easily
supported by plugging new backends into ATen’s dynamic
dispatcher. We extend PyTorch with a new ATen backend
to support both dense and sparse tensor processing on the
target manycore co-processor. With our framework, tensor
workloads can run exclusively on the CPU of the target
heterogeneous system without any changes to the code. In
this scenario, the CPU backend supports the framework’s
Python APIs and data is stored in CPU host memory (see
Fig. 2(a)). One can also choose to accelerate tensor workloads
on the manycore co-processor with minimal changes to the
existing code (see Fig. 3(a)). Only changing three lines is
necessary: one for migrating the neural network model to
the manycore co-processor and two for migrating the input
data and expected labels. PyTorch operators that are platform
specific will be dispatched to the manycore backend, and data
will be automatically migrated as needed (see Fig. 2(d)).

An example workload using the proposed framework is
shown in Fig. 3. When PyTorch operator nn.ReLu() is
used in Python code, its ATen counterpart relu() is called.
In this case, relu() is platform agnostic (i.e., runs on the
CPU), and is implemented by reusing a platform-specific
ATen operator (i.e., threshold()). Since model in line 26
of Fig. 3(a) is on the manycore co-processor, the call to
threshold() in line 4 of Fig. 3(b) is dispatched to the
manycore implementation (Fig. 3(c)), and compute is then
offloaded to the manycore co-processor (Fig. 3(d)).

We have ported over 100 tensor operators including matrix
multiplication, 2D convolution, most element-wise operators
(e.g., add, subtract), reductions (e.g., sum, mean), and sparse
operators (e.g., sparse matrix-vector multiplication). All oper-
ators are hand tuned and aggressively optimized: scratchpad
memory is utilized to enable data reuse and increase arithmetic
intensity; stall-on-use is leveraged to exploit pipeline paral-
lelism and hide memory latency; unrolling is used to balance
instruction cache performance and loop overhead.

For sparse operators, prior work has shown that the layout of
sparse tensors can significantly impact performance [29], [30],
[31]. In our framework, we implement a novel cyclic bank
sparse row (CBSR) tensor layout. CBSR is designed to reduce
LLC bank conflicts and network congestion by ensuring cores
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Fig. 2: Different Backends for Extended PyTorch Framework – (a) native execution on CPU without new backend; (b) emulation backend:
host code executes natively on CPU, device code also executes natively on CPU for functional testing; (c) cosimulation backend: host code
executes natively on CPU, device code executes on Verilog RTL simulator for cycle-accurate performance evaluation; (d) prototype backend:
host code executes natively on CPU, device code executes on a real FPGA/ASIC prototype.

1 class Autoencoder(nn.Module):
2 def __init__(self):
3 ...
4 self.encoder = nn.Sequential(
5 nn.ReLu(),
6 nn.BatchNorm1d(800),
7 nn.Dropout(0.5)
8 )
9

10 self.bneck = nn.Linear(800, 400)
11

12 self.decoder = nn.Sequential(
13 nn.ReLu(),
14 nn.BatchNorm1d(400),
15 nn.Dropout(0.5)
16 )
17 ...
18

19 def forward(self, x):
20 x = self.emb(x).sum(dim=1)
21 x = self.encoder(x)
22 x = self.bneck(x)
23 x = self.decoder(x)
24 x = self.output(x)
25

26 model = Autoencoder().manycore()
27 ...
28 for x, y in dataloader_train:
29 x = x.manycore()
30 y = y.manycore()
31

32 out = model(x)
33 loss = F.MSELoss(out, y)
34

35 opt.zero_grad()
36 loss.backward()
37 opt.step()

(a) Python Frontend

1 Tensor relu(const Tensor self) {
2 Tensor res = opt_result.value_or(Tensor());
3 auto iter = TensorIterator::binary_op(res, self, self);
4 return at::threshold(iter,0,0);
5 } (b) Platform Agnostic ATen Operator

1 void threshold_kernel_mc(TensorIterator& iter, Scalar t, Scalar v) {
2 AT_DISPATCH_FLOAT_TYPE_ONLY(iter.dtype(), "threshold_mc",
3 [&]() {
4 offload_op_binary(iter, t.to<scalar_t>(),
5 v.to<sclar_t>(),
6 "tensorlib_threshold");
7 });
8 } (c) Manycore Backend CPU Host Function

1 int tensorlib_threshold(mc_tensor_t* res_p, mc_tensor_t* self_p,
2 float* threshold_p, float* value_p) {
3 MCTensor<float> res(res_p);
4 MCTensor<float> self(self_p);
5 float threshold = *threshold_p;
6 float value = *value_p;
7

8 mc_tiled_foreach(res, self, [&] (float self_v) {
9 return (self_v <= threshold) ? value : self_v;

10 });
11

12 mc_barrier ();
13 return 0;
14 } (d) Manycore Backend Device Function

Fig. 3: Extended PyTorch Framework for CPU-Manycore Heterogeneous Systems – Blue
lines 26, 29–30 in (a) are the only changes required to port an existing workload (e.g.,
training a deep neural network) written with PyTorch to run on the target CPU-manycore
heterogeneous system. Red lines show the (simplified) dispatch chain for the PyTorch ReLu
operator: Python frontend (a) dispatches to platform agnostic ATen operator (b), which
dispatches to manycore backend CPU host function (c), which finally launches the manycore
device function (d).

only access LLC banks located in the same column. Fig. 4
shows an example using traditional compressed sparse row
(CSR), CBSR and CBSR+Padding formats for a 4× 4 sparse
matrix. In this simplified example, our architecture has one
DRAM channel with four LLC banks. Each core only accesses
one row of the sparse matrix. The data block size within each
bank is two data elements and follows the cyclic memory
partitioning scheme of [32]. In CSR, the indices of non-zero
values of different rows may fall into the same bank, which
leads to memory bank conflicts when different cores access
either column indices or values (i.e., C0 accesses v2 and C1
accesses v3). Using CBSR can eliminate the memory bank
conflict between cores when accessing either indices or values,
but memory conflicts still remain when one core is accessing

the indices and the other core is accessing the values (i.e.,
C0 is accessing v0 and C1 is accessing column indices of
v3). CBSR+Padding makes indices and values aligned to the
same LLC bank, and memory bank conflicts can be completely
eliminated.

Our tensor processing framework and the emulation infras-
tructure are open-source1. We use state-of-the-art test-driven
design based on pytest2, Hypothesis [33]3, and continuous
integration4. Operator development proceeds through three

1https://github.com/cornell-brg/hb-pytorch
2https://pytest.org
3https://github.com/HypothesisWorks/hypothesis
4https://travis-ci.com/github/cornell-brg/hb-pytorch
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Fig. 4: CSR and CBSR Sparse Tensor Formats

levels of emulation, simulation, and finally hardware execu-
tion:

a) Emulation Backend: We first develop both the CPU
and manycore functions of PyTorch operators using the em-
ulation backend (Fig. 2(b)). Emulation provides the same
APIs as the actual manycore co-processor runtime. It enables
functional verification, fast turnaround time, and standard
debugging tools (e.g, gdb) on manycore device functions.
When building with the emulation backend, offloading uses
native function calls, data migration uses regular memory
copy, and device functions will be executed natively on the
host.

b) Cosimulation Backend: After functional verification,
we move to cycle-accurate RTL simulation (Fig. 2(c)). In
this environment, we again verify correctness, and iterate to
optimize performance with architectural counters. The cosimu-
lation backend leverages an RTL simulator (e.g., Verilator5) to
model a small-scale version of the HammerBlade system run-
ning at 1GHz with 16 columns and 8 rows. To model DRAM
timing we use the open-source DRAMSim3 library [34], a
timing accurate simulator. Architectural performance counters
are inserted using non-synthesizable SystemVerilog bind
statements for no-cost performance analysis of kernels. The
RTL for this design has been validated in silicon. Host code
executes natively on an Intel Xeon E7-8867v4 CPU.

c) Prototype Backend: Eventually, we plan to support
moving to a real FPGA/ASIC prototype (Fig. 2(d)). Pre-
liminary work has demonstrated the feasibility of using an
FPGA prototype to study larger workloads than possible in
simulation.
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Fig. 5: ATen Operator Micro-Benchmarking – Scalability of a repre-
sentative set of ATen operators. See Table I for operator description
and input sizes. Normalized to single core performance.

B. Micro-Benchmarking

We conduct a scalability study on a set of representative
PyTorch operators shown in Table I. These operators vary in
arithmetic intensity and enable understanding the performance
of our framework on the target CPU-manycore heterogeneous
system. Fig. 5 shows that arithmetic-intensive operators, such
as MatMul and Conv2D, scale well and achieve a sustained
throughput of 78.5 GFLOP/s and 68.0 GFLOP/s, respectively.
Memory-intensive dense operators, such as AddMV, Sum,
and Add, show only moderate scalability, as they can eas-
ily saturate the manycore co-processor’s memory bandwidth.
EmbBack is implemented with fine-grained locking, in which
each embedding entry is associated with a spin-lock to resolve
update conflicts and scales well up to 64 active cores. How-
ever, increased memory latency, instead of lock contention, is
the primary reason EmbBack scales poorly to 128 active cores.
SpMV scales better than other memory-intensive operators
because of the CBSR tensor layout, which is specifically
designed to avoid LLC bank conflicts on the target manycore
co-processor.

We study four operators that are critical to many real-world
tensor workloads in more detail: MatMul, Conv2D, AddMV,
and SpMV. Fig. 6 shows that the cycles per instruction (CPI)
increases with the number of active cores. For arithmetic-
intensive operators such as MatMul and Conv2D, the number
of stall-on-network cycles (i.e., load/store requests to LLC
cannot be sent due to network congestion) reduces overall
performance after reaching 64 active cores (see Fig. 6 (a–b)).
Even with only one active core, MatMul and Conv2D cannot
hide enough memory latency to avoid stall-on-use (i.e., true
data dependency). Both MatMul and Conv2D can use tiling.
Larger tiling blocks increase data reuse resulting in higher
arithmetic intensity and thus better performance. However, the
necessity of moving large data blocks to the scratchpads with
in-order scalar cores introduces phased behavior into these
arithmetic-intensive operators. A data-loading phase moves a
large block of data into the scratchpad, followed by an execute
phase to consume the data block. To move data to the scratch-
pads, we use a pair of regular load and store instructions.

5https://github.com/verilator/verilator
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TABLE I: Operator Micro-Benchmarking

ATen PyTorch
Operator Description Operator AI Input

MatMul Matrix-Matrix Multiplication torch.mm High 256× 256× 256
Conv2D 2D Convolution torch.convolution Medium 32× 32 input w/ 16 channels, 16 3× 3 Filters, 32 Images Batch
AddMV Matrix-Vector Multiplication torch.addmv Low 1024× 128
SpMV Sparse Matrix-Vector Multiplication torch.mv Low FB-Johns55, 5157× 5157 sparse matrix, density 1.4%
Sum Reduction torch.sum Low One Tensor w/ 192, 000 Elements
EmbBack Backpropagation of Embedding torch.nn.Embedding Low 600× 100 Embedding Table, 256 Records Batch, 50 Entries per Record
Add Element-Wise Add torch.add Low Two Tensors w/ 131, 072 Elements Each

Inputs used in the operator micro-benchmarking. See Figure 5. AI = arithmetic intensity.
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Stall-on-Use = load request has been sent but response haven’t received; memory latency = Stall-on-Network + Stall-on-Use.

A core first loads a word into one of its registers and then
explicitly stores the data into its core-local scratchpad. We
can hide memory latency by unrolling the loop so that the
instruction stream has a long sequence of loads followed by a
long sequence of stores. With stall-on-use, we are able to have
many memory requests in-flight which amortizes the memory
latency. However, even after applying these optimizations,
memory latency still contributes significantly to the overall
execution time.

For memory-intensive operators, such as AddMV and
SpMV, the number of stall cycles increases quickly beyond 16
active cores (see Fig. 6 (c–d)). This is likely due to a limited
number of LLC banks. With more active cores than available
LLC banks, even if memory accesses from cores can be evenly
distributed, LLC contention remains. Fig. 6 shows that unlike
AddMV, SpMV execution time is dominated by stall-on-use
cycles instead of stall-on-network cycles. This indicates the
CSBR tensor layout is able to significantly reduce network
congestion.

IV. SOFTWARE-ENABLED DAE
Section III confirmed that memory latency is a major factor

in the performance of both dense and sparse tensor operators
on the target architecture. We expect memory latency to be-
come an even more significant issue in future CPU-manycore
heterogeneous systems with thousands of cores and 2D mesh
on-chip networks, as bisection bandwidth and bandwidth going
off the mesh to higher levels of the memory hierarchy scale
linearly while the number of cores scales quadratically. We
can either tolerate the ever growing memory latency, or we
can reduce the amount of data transferred. GPGPUs explored
both directions through extreme temporal multithreading with
fine-grain context switching (latency hiding) and memory co-
alescing (reducing data movement). As demonstrated for con-
ventional processors in prior work [25], [35], [36], decoupled

access/execute can reduce or eliminate memory latency and
improve performance. In this section, we leverage software-
based decoupled access/execute to realize both latency hiding
and data movement reduction in the context of a manycore
architecture. We propose naı̈ve-software DAE and systolic-
software DAE, and we then evaluate their performance against
optimized data-parallel baseline implementations.

A. Naı̈ve-Software DAE

We first explore decoupled access/execute using pairs of
cores: one as the access core and one as the execute core. In a
typical DAE architecture, access and execute are connected by
hardware queues for communication. In the context of a PGAS
manycore, we leverage remote store programming and create
software queues in the execute core’s scratchpad for the same
purpose. We refer to this software decoupled access/execute
scheme as naı̈ve-software DAE.

In naı̈ve-software DAE, the access core sends requests
to higher levels of the memory hierarchy to load data into
its registers. Unlike the data-movement scheme described
in Section III, the access core stores the loaded value into
its peer’s scratchpad (i.e., the software queue). When data
becomes available, the execute core reads the data block,
performs computation, yields the queue space, and writes back
the results (if necessary). In many DAE architectures, writing
back the results is also done by the access core. However, our
early analysis suggested writing results from an execute core to
an access core, and then to higher levels of memory hierarchy
provided no benefit. Thus, in naı̈ve-software DAE, execute
cores write results directly back to DRAM. Since the block
currently being processed stays in the software queue (i.e., the
execute core pops the entry only after finishing computation),
at least two entries in each software queue are necessary to
enable access/execute decoupling. This puts increased demand
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Fig. 7: Naı̈ve and Systolic Software DAE – TP/CC = throughput
per compute core; TP/Sys = overall throughput per system; MatMul
showing 768 × 768 × 768; Conv2D, Conv2D-iB, and Conv2D-fB
showing 32 images batch; AddMV showing 768 × 768; SpMV
showing FB-Johns55. See Table II for detailed input specification.

on the scratchpad resulting in smaller tile sizes compared to
a data-parallel baseline.

We implement six operators with naı̈ve-software DAE: Mat-
Mul, Conv2D, Conv2D-iB (i.e., Conv2D backward w.r.t. input
images), Conv2D-fB (i.e., Conv2D backward w.r.t. filters), Ad-
dMV, and SpMV. The baselines are hand-tuned data-parallel
implementations. We add a second baseline for each operator,
in which we only activate 50% of the cores in the manycore
co-processor using the data parallel implementation. We refer
to this second baseline as 50%-idle. We include this baseline
to understand if the benefit of naı̈ve-software DAE comes
from fewer cores making memory requests. Since the target
manycore is built with scalar cores, each core can inject at
most one memory request every cycle. With only 50% cores
active, the maximum possible new requests per cycle is halved.
This may relieve network congestion and improve operator
performance.

Results are summarized in Fig. 7 and Table II. Compared
to the baseline, 50%-idle generally achieves much lower
overall throughput, as expected with half of the cores active.
However, we also observe an increase in per-core through-
put, especially in the cases of AddMV and SpMV. This
improvement matches our observation in Section III, that
increasing the number of active cores can reduce performance
due to network congestion. We also observe that for these
two operators, naı̈ve-software DAE only provides marginal
improvement, or hurts performance because low arithmetic
intensity means there is not enough time for the access core
to load a block before the execute core needs to consume this
block. However, for arithmetic-intensive operators (i.e., Mat-
Mul, Conv2D, Conv2D-iB. and Conv2D-fB), naı̈ve-software
DAE significantly improves the per-compute-core throughput.
Compared to the baseline, naı̈ve-software DAE is able to
improve per-compute-core throughput by 1.5–1.9×. Compared
to 50%-idle, naı̈ve-software DAE is able to improve per-
compute-core throughput by 1.3–1.5×, despite using smaller
tiling block sizes than both the baseline and 50%-idle. While
this improvement over 50%-idle partially comes from having

2× the resources and offloading load and address generation
instructions to access cores, the main source of performance
benefit comes from memory-latency hiding. In Conv2D, 13%
of the dynamic instructions are related to load and address
generation, and these instructions are offloaded to access cores.
However, we observe 53% performance improvement over
50%-idle.

B. Systolic-Software DAE

While naı̈ve-software DAE implementations show signifi-
cant per-compute-core improvement, the overall performance
decreases because the per-compute-core improvement does not
outweigh the reduced number of compute cores performing
useful work. To translate the high per-compute-core through-
put to an overall performance improvement, we must change
the ratio of access to execute cores. However, having one
access core serve two or more execute cores can also degrade
performance when the execute cores finish faster than the
access core can supply data. For example, in MatMul an access
core cannot finish loading data for two execute cores before
its execute counterparts finish consuming their current blocks,
and thus the execute cores will need to stall. Alternatively,
multiple access cores could fetch data for a single execute core.
Unfortunately, an asymmetric ratio of access and execute cores
results in access cores writing data to execute cores located
multiple hops away, which can increase network congestion
and further slow down data transfers. Instead of having an
access core load independent data blocks for each execute
core it serves, we can exploit the fact that the same data
is needed by multiple execute cores by intelligently placing
the compute and having execute cores pass data blocks in
a systolic fashion (i.e., in-compute array reuse). We call this
scheme systolic-software DAE. Since systolic-software DAE is
only feasible for operators with significant data reuse, we focus
on the arithmetic-intensive operators (i.e., MatMul, Conv2D,
Conv2D-iB, and Conv2D-fB) in the following sections.

The systolic-software DAE implementation of MatMul uses
a similar approach as output-stationary systolic hardware ac-
celerators for MatMul, although the systolic-software DAE
implementation operates at block granularity instead of scalar
value granularity. In systolic-software DAE, blocks of input
data are loaded by access cores on the West and North edges
of the manycore array, and these blocks are passed along
either horizontally or vertically (see Fig. 8(a)). The systolic-
software DAE implementation of Conv2D is implemented in a
1D systolic manner with replication. An input block is passed
along a chain of execute cores, in which each execute core
applies a different filter to the block (see Fig. 8(b)). MatMul
and Conv2D implemented with systolic-software DAE on a
128-core device has 64% or 88% more respectively execute
cores compared to naı̈ve-software DAE.

We implement the four arithmetic-intensive operators (i.e.,
MatMul, Conv2D, Conv2D-iB, and Conv2D-fB) with systolic-
software DAE. Results are summarized in Fig. 7 and the
systolic-software DAE columns of Table II. Conv2D-iB and
Conv2D-fB can be implemented in ways that are similar to
Conv2D and MatMul, respectively. Across all four operators,
systolic-software DAE has a per-compute-core throughput that
is lower than naı̈ve-software DAE, but still up to 1.5× higher
than the data-parallel baseline. This is because execute cores
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Fig. 8: Systolic Mapping – SSD = systolic-software DAE; ID = idle
core; AC = access core; EC = execute core. In (a) data is loaded by
access cores, and is passed along by execute cores to the South and
to the East, while in (b) data is passed in one direction only.

in systolic-software DAE need to pass data blocks to their
neighboring execute cores in addition to performing the actual
computation. Additional instructions for data movement lead
to lower throughput. However, systolic-software DAE benefits
from the additional execute cores, and achieves up to 1.25×
increased system throughput. Note that systolic-software DAE
also has fewer compute cores than the baseline. There are three
cases (i.e., Conv2D with a batch size of 2 and Conv2D-fB
with a batch size of 2 and 4) where systolic-software DAE
performs worse than the baseline. This is because in systolic-
software DAE data blocks need to be passed from execute core
to execute core. Thus, there is a much longer warmup phase for
systolic-software DAE, and this results in worse performance
when the batch size is small.

V. HARDWARE-ACCELERATED DAE

Naı̈ve-software DAE and systolic-software DAE leverage
existing hardware mechanisms in the CPU-manycore hetero-
geneous system and demonstrate both per-compute-core and
per-system throughput improvements. However, software-only
approaches have two disadvantages. First, general-purpose
cores are area-inefficient for data access tasks. Most access
tasks only require basic integer arithmetic and simple con-
trol flow for 1D and 2D array accesses, but cores in the
manycore co-processor are equipped with instruction caches,
data scratchpads, and floating point units. Second, dedicating
general-purpose cores to data access tasks reduces the peak
throughput of the manycore co-processor. While systolic-
software DAE can help mitigate this issue by reducing the
number of access cores, most operators still require the first
column and/or the first row of cores in the manycore co-
processor to load data.

We adopt a software/hardware co-design approach to ad-
dress these challenges. We design and implement an access
accelerator (AX), a configurable hardware unit that streams
data from the LLC to the scratchpad of a target execute core.
Compared to general-purpose cores, an access accelerator is
significantly more area efficient, yet still provides the benefits
of decoupled access/execute. This light-weight access acceler-
ator also achieves the same peak computation throughput as
the baseline manycore with very low area overhead. While
having hardware engines that are dedicated for moving data
(e.g., DMA engines) is not a new idea, the proposed access
accelerator is unique in its ability to act as a first-class citizen
in both the mesh-based on-chip network and the remote store
programming model.

float* src = imap.data()
+ img_id * strides[0]
+ chnl_id * strides[1]
+ blk_y * strides[2]
+ blk_x * strides[3];

if ( pad_first_col )
pad_col(buf, 0);

if ( pad_last_col )
pad_col(buf, dim_x-1);

if ( pad_first_row )
pad_row(buf, 0);

if ( pad_last_row )
pad_row(buf, dim_y-1);

for r in range(0, dim_y) {
for c in range(0, dim_x)
buf[offset+c] = *(src+c);
src += strides[2];
offset += dim_x;

}
(a) Data Access Pseudo Code

imap.data() (in L2$)
*src

di
m

_y

buf (in scratchpad)
...padding

dim_x

(b) Data Access Illustration

Fig. 9: Conv2D Forward Data Access – In the Conv2D forward
kernel, the access cores run program in (a) and load input feature
map blocks into the target data scratchpad as shown in (b). Note the
access cores calculate src and pad zeros (in red) to the imap buffer.

A. Access Accelerator Design
Data Access Tasks – Fig. 9 shows the data access pseu-

docode of the Conv2D kernel and illustrates how the access
cores load data from the LLC and pad zeros to the input
feature map block. While we explored several operators with
software-only DAE schemes, their data access patterns are all
similar. In general, data access tasks involve two nested for
loops that load a matrix of size dim_x by dim_y into the
scratchpad of the target execute core and an optional padding
process that pads zeros around the matrix. This generic data
access pattern can be efficiently implemented as an access
accelerator that correctly performs common data access tasks
given the metadata about the accesses (i.e., the source address,
dimensions, strides, padding information, and the destination
address).

Accelerator Design – Fig. 10(a) shows the architecture of
the access accelerator and how it is connected to a mesh
network router. At the core of the access accelerator is a
configurable address generator and a padding engine. These
two modules generate a stream of memory requests. Since
the mesh network in the target manycore system is only
point-to-point ordered, the access accelerator also includes a
reorder queue to reorder the memory responses from different
LLC banks. The request arbiter arbitrates between memory
read requests to the LLC and remote store requests to the
target scratchpad because there is only one master interface
exposed by the mesh network router. Finally, an address
translator is required because the execute cores configure
access accelerators using virtual addresses.

Accelerator Integration – Fig. 10(b) illustrates how access
accelerators are integrated into the target manycore array. In
the baseline manycore, each mesh network router is connected
to a RISC-V core. To integrate the access accelerators, we
extend the mesh network and instantiate access accelerators at
the top row and the left-most column. This composition works
particularly well with systolic-software DAE implementations
where most on-chip network traffic is between neighboring
cores or accelerators. This composition also ensures a fair
comparison with the baseline manycore system for two rea-
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TABLE II: Operator Throughput

Baseline 50%-Idle NSD SSD NAD SAD

Operator Input TP/C TP/S TP/C TP/S TP/C TP/S TP/C TP/S TP/C TP/S TP/C TP/S

MatMul 768× 48× 768 0.53 67.8 0.60 38.3 0.89 57.2 0.67 70.4 0.86 81.5 0.64 79.6
768× 96× 768 0.56 71.6 0.63 40.1 0.92 58.9 0.74 77.9 0.92 87.9 0.71 88.1
768× 192× 768 0.60 77.3 0.66 42.5 0.95 60.9 0.78 81.7 0.95 90.6 0.75 93.3
768× 384× 768 0.60 76.5 0.66 42.5 0.96 61.4 0.80 83.7 0.97 92.1 0.77 95.9
768× 768× 768 0.57 73.6 0.62 39.9 0.85 54.5 0.80 84.3 0.97 92.4 0.78 96.4

Conv2D Batch Size 2 0.46 58.7 0.52 33.3 0.79 50.4 0.48 57.5 0.74 70.2 0.46 57.5
Batch Size 4 0.50 63.5 0.55 35.3 0.82 52.6 0.58 69.4 0.78 74.0 0.57 71.0
Batch Size 8 0.52 66.2 0.56 35.6 0.84 54.1 0.64 76.2 0.80 75.9 0.63 78.9
Batch Size 16 0.52 67.2 0.56 35.8 0.86 54.7 0.67 80.2 0.81 76.9 0.66 82.0
Batch Size 32 0.53 68.0 0.56 35.9 0.86 55.0 0.68 82.0 0.81 77.4 0.67 83.6
Batch Size 64 0.53 68.2 0.56 35.9 0.86 55.2 0.69 82.5 0.82 77.8 0.68 84.3

Conv2D-iB Batch Size 2 0.46 59.2 0.54 34.4 0.78 50.0 0.49 59.2 0.73 69.7 0.46 56.9
Batch Size 4 0.50 63.7 0.55 35.3 0.82 52.5 0.59 70.8 0.77 73.7 0.57 70.7
Batch Size 8 0.52 66.1 0.56 35.6 0.84 53.6 0.65 77.6 0.80 75.9 0.64 79.7
Batch Size 16 0.52 67.0 0.56 35.7 0.85 54.4 0.68 82.1 0.81 77.2 0.66 81.9
Batch Size 32 0.52 66.9 0.56 35.8 0.86 54.8 0.70 84.0 0.82 77.7 0.67 83.2
Batch Size 64 0.53 68.2 0.56 35.9 0.86 55.0 0.71 85.6 0.82 78.0 0.67 83.6

Conv2D-fB Batch Size 2 0.32 41.3 0.49 31.2 0.64 41.2 0.34 35.4 0.64 60.9 0.28 34.5
Batch Size 4 0.39 49.5 0.53 33.9 0.76 48.5 0.46 48.0 0.72 68.6 0.40 49.4
Batch Size 8 0.44 55.9 0.55 35.0 0.76 48.5 0.56 59.2 0.77 73.2 0.51 64.0
Batch Size 16 0.46 58.3 0.56 35.5 0.75 48.0 0.64 66.7 0.79 75.2 0.58 72.0
Batch Size 32 0.47 60.6 0.56 35.5 0.76 48.6 0.67 70.6 0.80 76.4 0.61 76.2
Batch Size 64 0.47 60.0 0.56 35.9 0.76 48.6 0.69 72.9 0.80 75.9 0.63 78.9

AddMV 256× 256 0.02 3.0 0.04 2.5 0.04 2.4 – – – – – –
512× 512 0.02 3.1 0.04 2.5 0.04 2.7 – – – – – –
768× 768 0.03 4.4 0.05 3.5 0.05 3.4 – – – – – –
1024× 1024 0.03 3.7 0.04 2.9 0.05 3.1 – – – – – –

SpMV FB-Johns55 0.04 4.9 0.05 3.2 0.05 3.5 – – – – – –
Facebook 0.02 2.9 0.03 2.2 0.04 2.5 – – – – – –
Cora 0.01 1.0 0.01 0.8 0.02 1.0 – – – – – –
CiteSeer 0.01 0.9 0.01 0.7 0.01 0.9 – – – – – –

MatMul = matrix multiplication; Conv2D = 2D convolution; Conv2D-iB = 2D convolution backward w.r.t. input image; Conv2D-fB = 2D
convolution backward w.r.t. filters; AddMV = general matrix-vector multiplication; SpMV = sparse matrix-vector multiplication; TP/C =
throughput per compute core; TP/S = overall throughput per system; NSD = naı̈ve-software DAE; SSD = systolic-software DAE; NAD =
naı̈ve-accelerated DAE; SAD = systolic-accelerated DAE. The target system has 128 cores. Conv2D, Conv2D-iB, Conv2D-fB are run with
16-channel 32× 32 images with 32 3× 3 filters. FB-Johns55 has sparsity of 1.4× 10−2; Facebook has sparsity of 5.4× 10−3; Cora has
sparsity of 1.4× 10−3; CiteSeer has sparsity of 8.3× 10−4. Per system throughput in naı̈ve-accelerated DAE and systolic-accelerated DAE
are area-normalized to baseline manycore. All numbers are in GFLOP/s.

sons. First, the access accelerator manycore (AX manycore)
has the same number of LLC banks and the same DRAM
bandwidth as the baseline manycore. Second, the AX many-
core has the same effective mesh network bandwidth as the
baseline. The AX manycore mesh network does have larger
bisection bandwidth than in the baseline manycore. However,
this additional bandwidth does not translate into improved
throughput because the extra network links and routers are
mostly used to provide access to LLC banks to the access
accelerators. The AX is a first-class citizen in the remote store
programming model: execute cores control a neighbor AX
by performing remote stores into the AX’s memory-mapped
control registers, and the AX performs remote stores into
its neighboring execute core’s scratchpad upon receiving data
from the LLC.

B. Access Accelerator Evaluation
Area – Fig. 11 compares the post-place-and-route area of

an access accelerator in a CMOS 14/16 nm technology and a
general-purpose core from prior work in a similar process [37].
We can see from the figure that the access accelerator is highly
area-efficient. The network router and endpoint consumes

about 40% and the accelerator data path consumes about
30% of the access accelerator area. The transmit adapter (TX)
includes a 32-element FIFO to buffer responses from the LLC,
and consumes around 30% of the accelerator area. Overall,
the access accelerator is 5× smaller than the general-purpose
core, making it an area-efficient choice for data access tasks.
The AX manycore (with an extra AX row and AX column as
shown in Fig. 10(b)) only increases the overall area by 2.9%
compared to the baseline manycore.

Naı̈ve-Accelerated DAE – Similar to the naı̈ve-software
DAE evaluation (NSD, see Section IV-A), we evaluate the area
efficiency of the access accelerators using a naı̈ve-accelerated
DAE (NAD) composition. In NAD, each execute core is
paired with an access accelerator that replaces the access core.
Fig. 12(a) and the NAD column of Table II shows the per-
compute-core throughput and the area-normalized per-system
throughput of different operators under NAD. We can see
that compared to NSD, NAD has similar per-compute-core
throughput since both access cores and access accelerators
are able to decouple data access from the computation on
execute cores. However, NAD has significantly higher area-
normalized per-system throughput (46% on average) than
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Fig. 11: Access Accelerator (AX) and General-Purpose Core (GC)
Normalized Area – AX eliminates instruction cache, data scratchpad,
FPU, etc. and is 5× smaller than a GC in a similar CMOS technology.
RX/TX = RX/TX adapter, Ctrl = control logic, Dpath = data path.

NSD. This difference is the largest on the matrix multipli-
cation (MatMul) operator, where NAD achieves 52% higher
area-normalized per-system throughput. The superior area-
normalized per-system throughput of NAD over NSD confirms
that our access accelerator is significantly more area-efficient
on data access tasks than general-purpose cores, and still
provides the same throughput benefits of DAE. We did not
implement and evaluate NAD versions of memory-intensive
operators (i.e., AddMV and SpMV). NAD cannot address
the fact that these operators are largely limited by memory
bandwidth. Prior evaluation has shown that a data-parallel
scheme is more effective (see Section IV-A).

Systolic-Accelerated DAE – As discussed earlier, systolic-
software DAE dedicates multiple general-purpose cores to load
data at the cost of manycore compute resources. Based on
the systolic-software DAE (SSD, see Section IV-B), we create
the systolic-accelerated DAE composition (SAD), which uses
the access accelerator manycore described in Section V-A
to run systolic-software DAE implementations. Fig. 12(b)
and the SAD column of Table II shows the per-compute-
core throughput and area-normalized per-system throughput
of different operators under SAD. We can see that compared
to SSD, SAD has similar per-compute-core throughput since
both designs are able to achieve decoupled access/execute.
In terms of overall area-normalized per-system throughput,
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Fig. 12: Naı̈ve and Systolic Accelerated DAE – TP/CC = throughput
per compute core; TP/Sys = overall throughput per system; MatMul
showing 768 × 768 × 768; Conv2D, Conv2D-iB, and Conv2D-fB
showing 32 images batch; AddMV showing 768 × 768; SpMV
showing FB-Johns55. See Table II for detailed input specification.

SAD has an average of 4.8% better throughput than SSD.
On MatMul, SAD is able to achieve 13.9% better average
throughput than SSD. On the target 16×8 manycore array,
the SSD approach uses eight (Conv2D and Conv2D-iB) or
23 (MatMul and Conv2D-fB) general-purpose cores for data
accesses. Therefore, the maximum overall per system through-
put improvement of SAD on the same manycore is 6% or
18% (depending on the kernel). In addition, the execute cores
in SAD need to perform remote memory stores to configure
the access accelerators for every input feature map block,
which occupies computation cycles. Despite having more
moderate throughput improvements over the highly optimized
SSD design, SAD still achieves the highest area-normalized
throughput on the four evaluated kernels among all six designs
(baseline, 50%-idle, NSD, SSD, NAD, SAD). Compared to
the baseline, the AX manycore introdues one extra cycle to
the memory latency when accessing LLC banks in the north.
However, this should have negligible performance impact on
operators that cannot leverage SAD, as our prior results in
Section III-B have shown that network congestion is the main
source of stalls for operators implemented with a data-parallel
scheme.
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VI. FIRST-ORDER ANALYSIS OF SW/HW SCALABILITY

In this section, we conduct first-order end-to-end evaluation
on three tensor workloads to evaluate our framework’s ability
to enable optimized dense and sparse tensor processing on
CPU-manycore heterogeneous systems with minimal modifi-
cations to existing workloads. We first introduce the workloads
and then describe our evaluation methodology. We finish
by estimating the performance of the these workloads when
scaled to a future 2,000-core CPU-manycore heterogeneous
system against an aggressive multicore CPU.

A. Emerging Tensor Workloads

a) Residual Neural Network (ResNet): Residual neural
networks are one form of convolutional neural networks
(CNNs) for image classification, which won the 2015 Ima-
geNet Large Scale Visual Recognition Challenge by allowing
the network’s accuracy to scale with its depth [38]. ResNet
introduces residual blocks, which are shortcut connections
between non-neighboring layers, to overcome a number of
training difficulties (e.g., vanishing gradient problem) faced
by conventional CNN models. In this work, we build and
train a 9-layer ResNet model (i.e., ResNet-9) on the CIFAR-10
dataset.

b) Recommender System (RecSys): The input to a recom-
mender system is a list of items a user has previously “liked”,
and the output is a list of items with scores predicting how
much the user might like an unseen item. An autoencoder is
a specific kind of unsupervised artificial neural network that
learns to copy its input to its output through an intermediate
“bottleneck” layer for dimensionality reduction. In this work,
we build and train this recommender system on the MovieLens
10M dataset.

c) Local Graph Clustering (LGC-ISTA): Local graph
clustering is an approximate variant of the personalized PageR-
ank algorithm. Its goal is to find a cluster of nodes that
are neighbors of a given seed node. We implement iterative
shrinkage-thresholding, which minimizes the loss function of
a graph signal vector such that all nodes in the neighborhood
of the seed node are associated with high scores, while
other nodes receive low scores. The algorithm uses the input
adjacency matrix and degree matrix to generate a sparse
matrix. It then iteratively updates the gradient, vector, and
loss function using SpMV, element-wise multiply, add, and
subtraction operations. We run 50 iterations for each seed node
on the FB-Johns55 dataset.

B. Methodology

A common practice to evaluate full-size workloads on
simulators is to extract each occurrence of the kernels, and
evaluate them individually with either random data or recon-
structed data outside of PyTorch. However, this approach leads
to inaccuracies since random or reconstructed data may not
represent the actual data layout during execution. To address
this challenge, we have developed a re-dispatching approach
that automates the evaluation process and preserves runtime
data layout. We first determine which operators in a workload
we would like to evaluate, flag them, and then start running
the workload on the CPU. When a call-site is reached the
execution is forked into a CPU instance (running natively),

and a manycore instance (running on an RTL simulator). After
both runs return, manycore results are validated against CPU
results. With re-dispatching, workload evaluation can be easily
parallelized by launching many copies of the workload; one
copy for each kernel of interest.

Since it is not feasible to simulate a 2,000-core manycore
architecture at reasonable simulation speed, we simulate a
smaller 128-core heterogeneous system running 1/16 of the
work using the co-simulation infrastructure described in Sec-
tion III. We then scale the performance of the manycore co-
processor to a full 2,000-core system via weak scaling. We
compare the scaled performance against the performance of
running the full workload on the host multicore CPU, which
is an aggressive 18-core out-of-order superscalar running at
2.4GHz (Intel Xeon E7-8867v4).

C. Results

By leveraging 2D convolution operators with SAD im-
plementations in ResNet, we estimate ResNet can achieve
2× better performance on the target manycore system than
on the aggressive multicore CPU (see Table III). 2D con-
volution operators run much faster on the manycore system
by exploiting massive parallelism, but batch normalization
and its backward pass (i.e., BatchNorm and BatchNormBack)
perform worse on the manycore system compared to the CPU.
This is because frequent synchronization is needed in batch
normalization operators, and synchronizing the manycore sys-
tem currently involves higher overhead than synchronizing a
multicore CPU. Compared to having 2D convolution operators
implemented with a traditional data-parallel approach, we are
able to train ResNet-9 13% faster with systolic-accelerated
DAE. Specifically, we observed that Conv2D-fB with systolic-
accelerated DAE achieves 2.1× better performance than its
data-parallel counterpart, which is higher than we have ob-
served in microbenchmarks (see Table II). Further inspection
reveals that unlike the microbenchmarks we used in prior
sections, inputs to convolution layers in ResNet do not fit in
the LLC. Unstructured memory accesses in the data-parallel
implementation lead to significantly more LLC misses.

We estimate RecSys can achieve 5.9× better performance
on the target manycore system than on the multicore CPU.
Compute intensive operators, such as AddMM and AddMM-
Back, generally have better performance on the target system
because the manycore can better exploit the parallelism in
these operators. We also observe that the largest performance
improvement comes from embedding (Emb), EmbBack, and
Sum. This improvement can be traced to two causes: (1) these
operators are memory intensive, and compared to a multicore
CPU, the manycore co-processor has a much higher total
memory bandwidth (1TB/s); and (2) we apply optimization
techniques that are not available by default in the CPU ATen
backend such as kernel fusion and intermediate value removal.
On the manycore co-processor, we are able to fuse Emb and
Sum together to eliminate intermediate value reads and writes.
We also explored leveraging systolic-accelerated DAE MatMul
in RecSys. However, the dimensions of MatMul instances in
RecSys generally lead to severe internal fragmentation [39],
and thus worse than baseline performance due to wasted
computation. TPUv1 faced a similar issue. Unlike specialized
hardware accelerators, we have the flexibility of falling back to
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TABLE III: ResNet Execution Breakdown

ATen Baseline MC Total MC Host MC Device
Operator Time (ms) Time (ms) Time (ms) Time (ms)

Conv2DBack 169.9 45.2 0.9 44.3
Conv2D 77.1 21.9 1.3 20.6
BatchNormBack 18.8 38.2 0.5 37.7
BatchNorm 17.8 36.9 1.9 35.0
Relu 8.5 2.2 0.5 1.7
ThresholdBack 6.3 3.1 0.4 2.7
MaxPool2DBack 6.2 1.2 0.5 0.7
MaxPool2D 5.6 1.1 0.7 0.4
Sqrt 4.3 1.8 0.9 0.9
ZerosLike 3.8 3.0 1.6 1.4
Add 3.3 6.2 2.6 3.6
AddCDiv 3.1 2.2 0.9 1.3
Div 3.1 3.0 1.3 1.7
Other 58.4 32.7 27.6 5.1

Data Transfer 0.0 0.03 0.03 0.0

Total (1 Epoch) 611.2 (s) 310.5 (s) 65.0 (s) 245.5 (s)

One training epoch; 1563 batches per epoch; 32 images per batch.
MC = target CPU-manycore system. MC total = MC host + MC
device.

a data-parallel implementation with a manycore architecture.
We believe other workloads which have more systolic DAE
friendly MatMul dimensions will see significant benefits.

We estimate LGC-ISTA can achieve 5.7× better perfor-
mance on the target manycore system than on the multicore
CPU. We observe that unlike RecSys, clustering spends more
time on the CPU host than on the co-processor. This is because
the input graph has high sparsity, and thus manycore device
functions for those operations will not run for long enough
time to cover the offloading overhead.

In summary, we estimate all three workloads will be able
to achieve much higher (i.e., up to 5.9×) performance on the
target CPU-manycore heterogeneous system compared to an
aggressive multicore CPU baseline. Note that the weak scaling
approach we adopt is optimistic and meant for demonstrating
the potential of a future full manycore system, rather than as
a rigorous comparison. While computing 1/16 of the output
on a 128-core system demonstrates that we have enough
software parallelism to fully utilize the 2,000-core system,
various architectural challenges (e.g., LLC coherence, DRAM
channel scaling, and cross channel data movement) must
be solved with minimal performance penalty to realize the
estimated performance. This work provides a software stack
that lays the groundwork for researchers to explore solutions
to these challenges in future work. To help estimate how a
future 2,000-core system might compare to a GPGPU, we
can consider a previously proposed manycore architecture with
496 RISC-V cores [40], [37]. This prior work has shown the
ability to achieve 93.04 Giga RISC-V instructions/s per watt
and 45.57 GRVIS/mm2. Given these prior results, the target
CPU-manycore heterogeneous system can potentially achieve
significantly higher area-normalized throughput and energy
efficiency compared to GPGPUs. Again, this work provides
a software stack that can enable more detailed comparative
analysis of manycore architectures versus GPGPUs and other
programmable accelerators.

VII. RELATED WORK

A wide variety of coarse-grain parallel architectures have
been developed over the past decade to exploit pipeline
parallelism. Architectures like Eyeriss [41] and DianNao [42]

TABLE IV: Recsys Execution Breakdown

ATen Baseline MC Total MC Host MC Device
Operator Time (ms) Time (ms) Time (ms) Time (ms)

EmbBack 427.8 8.2 1.2 6.0
Emb 94.8 1.4 0.5 0.9
Sum 35.7 0.0 0.0 0.0
AddmmBack 23.3 16.4 2.4 14.0
ZerosLike 15.1 4.9 3.9 1.0
CrossEntropyLoss 14.4 10.6 2.7 8.9
Addmm 11.1 7.7 0.5 7.2
BatchNorm 10.1 11.6 1.6 10.0
Addcdiv 8.3 5.4 2.2 3.2
Sqrt 8.3 8.5 1.9 6.6
Div 8.1 7.8 3.4 4.4
BatchNormBack 8.0 8.6 0.6 8.0
Add 7.9 8.9 5.1 3.8
Mul 7.4 11.6 6.6 5.0
Dropout 6.9 6.1 1.4 4.7
Other 17.9 12.4 5.4 7.0

Data Transfer 0.0 3.5 3.5 0.0

Total (1 Epoch) 185.5 (s) 31.5 (s) 11.2 (s) 20.3 (s)

One training epoch; 273 batches per epoch; 256 users per batch. MC
= target CPU-manycore system. MC total = MC host + MC device.

TABLE V: Local Graph Clustering Execution Breakdown

ATen Baseline MC Total MC Host MC Device
Operator Time (ms) Time (ms) Time (ms) Time (ms)

SpMV 23960.0 2267.4 1776.0 491.4
Sub 365.9 1120.0 1024.0 96.0
Add 368.8 544.0 496.0 48.0
Max 759.5 480.0 432.0 48.0
Mul 31.1 65.9 56.3 9.6
Clone 0.2 9.6 9.0 0.6

Data Transfer 0.0 2.3 2.3 0.0

Total 25.5(s) 4.5(s) 3.8(s) 0.7(s)

Personalized PageRank for 500 seed nodes; 50 iterations per seed
node. MC = target CPU-manycore system. MC total = MC host +
MC device.

are domain-specific accelerators for convolutional neural net-
works. Later versions support operations on sparse tensors.
These proposals demonstrate similar parallel dataflow patterns.
The TPU [43] and VTA [44] architectures integrate systolic
matrix-multiply and vector processing units to accelerate more
general machine learning computations. More general purpose
architectures also exist: RAW [45] uses an inter-processor
scalar operand network to forward results between processors.
Plasticine [46] contains a mesh of general-purpose compute
units for processing workloads from machine learning, data,
and graph analytics. These architectures exploit pipeline par-
allelism by composing coarse grain functional units, similar
to our work.

Many architectural solutions have been proposed to decou-
ple memory and compute operations [25]. Decoupled Supply
Compute (DeSC) [35] is an automatic extension of DAE for
general-purpose CMPs that uses a “Supplier Device” and a
“Compute Device”, similar to our naı̈ve-software DAE ap-
proach. The Load Slice Core [24] is a form of restricted out-of-
order machine. With an additional pipeline, load and address
generation slices can be issued out-of-order and speculatively
with respect to compute slices, while remaining in-order within
a slice. Slice formation is handled by hardware. Tran et
al. [47] proposed a SW/HW co-design method. Instructions
are grouped into access and execute phases at compile time.
Access phases can run and commit out-of-order with respect to
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execute phases at runtime. Both techniques rely on hardware
that is more complex than the target manycore architecture
provides (e.g., superscalar cores). Manticore [16] introduces
custom ISA extensions to leverage DAE and improve FPU uti-
lization. Techniques proposed in this work aim to enable DAE
in the context of a manycore with thousands of simple stall-
on-use in-order scalar cores, and with existing programming
model and core microarchitecture. The Cell processor [36]
includes per-core DMA engines to overlap computation with
data transfer. The Epiphany processor [15] also includes a
DMA engine. This prior work explores pairs of memory
and compute engines, while our approach extends this idea
with AX’s along the periphery of the target architecture. Our
approach is more similar to CoRAM [48], where a control
thread can manage multiple scratchpads on an FPGA device.
Recent work has shown the potential of using a chiplet-based
approach to scale the target manycore achitecture to thousands
of cores [6], [16].

Several high-level languages have been created to express
complex pipeline parallelism in programming. StreamIt [49]
exposed pipeline parallelism for the RAW architecture. More
recent work has enabled pipeline parallelism for general-
purpose machines. Interstellar [50] is an extension to Halide’s
scheduling with pipeline parallelism expressions. Spatial [51]
is a general-purpose DSL for expressing pipelines and can
target Plasticine [46]. These languages are higher-level than
our own development language and can be used in the future
to ease programmer expression of pipeline parallelism on
manycore architectures.

One approach to exploiting software pipelines is through
parallel frameworks like PyTorch [20]. These frameworks use
pre-built libraries with hand-optimized primitives that exploit
software pipelines, and abstract designers from the complexity
of expression. For example, TVM [52] supports CPUs, GPUs,
and also the VTA [53] architecture. TensorFlow [21] has back-
ends for CPUs, GPUs, as well as the Google TPU [43]. Our
work adds another backend to these state-of-the-art software
stacks.

VIII. CONCLUSION

Programmability and memory latency are the key challenges
in CPU-manycore heterogeneous systems. In this paper, we
address the programmability challenge with a tensor process-
ing framework in a high-level library that abstracts hand-
optimized operators for dense and sparse workloads. Through
end-to-end evaluation of dense and sparse tensor workloads,
we show that the proposed framework can potentially achieve
up to 5.9× better performance on a 2,000-core CPU-manycore
heterogeneous system compared to an aggressive multicore
CPU. We address the manycore memory latency challenge
by exploring both software and hardware-accelerated decou-
pled access/execute schemes on the manycore co-processor.
Operators implemented with our techniques achieve up to
1.32× throughput improvement, compared to an aggressive
data-parallel baseline.

ACKNOWLEDGMENTS

This work was supported in part by NSF CRI Award
#1512937, NSF SHF Award #1527065, NSF SHF #1909661,
DARPA SDH Award #FA8650-18-2-7863, a research gift from

Facebook and Xilinx, and equipment, tool, and/or physical
IP donations from Intel, Synopsys, Cadence, and ARM. The
authors acknowledge and thank Kexin Zheng, Janice Wei,
Angela Zou, Yuwei Hu, and Adrian Sampson for using the
proposed PyTorch framework and providing useful feedback.
The authors also thank Shunning Jiang and Hanchen Jin
for their advice in developing domain-specific accelerators
for integrating into manycore co-processors, and Zichao Yue
for his contributions to the proposed CBSR format. Finally,
the authors thank the entire Bespoke Silicon Group at the
University of Washington for manycore RTL development
and the PyTorch and RISC-V communities for developing
and supporting the software infrastructure that serves as the
foundation for this work. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of AFRL, DARPA, or the U.S. Government.

REFERENCES

[1] M. B. Taylor et al., “A 16-issue multiple-program-counter microproces-
sor with point-to-point scalar operand network,” Int’l Solid-State Circuits
Conf. (ISSCC), Feb 2003.

[2] M. McKeown et al., “Piton: A manycore processor for multitenant
clouds,” IEEE Micro, vol. 37, no. 2, pp. 70–80, Mar/Apr 2017.

[3] J. Howard et al., “A 48-core ia-32 message-passing processor with DVFS
in 45nm CMOS,” Int’l Solid-State Circuits Conf. (ISSCC), Feb 2010.

[4] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-GHz
mesh interconnect for a teraflops processor,” IEEE Micro, vol. 27, no. 5,
pp. 51–61, Sep/Oct 2007.

[5] M. Lis, K. S. Shim, M. H. Cho, I. Lebedev, and S. Devadas, “Hardware-
level thread migration in a 110-core shared-memory multiprocessor,”
MIT CSAIL CSG, Tech. Rep. 512, Nov 2013.

[6] P. Vivet et al., “A 220GOPS 96-core processor with 6 chiplets 3D-
stacked on an active interposer offering 0.6ns/mm latency, 3Tb/s/mm2
inter-chiplet interconnects and 156mW/mm2@ 82%-peak-efficiency
DC-DC converters,” ISSCC, Feb 2020.

[7] S. Bell et al., “Tile64 processor: A 64-core soc with mesh interconnect,”
Int’l Solid-State Circuits Conf. (ISSCC), Feb 2008.

[8] C. Ramey, “TILE-Gx100 manycore processor: Acceleration interfaces
and architecture,” Symp. on High Performance Chips (Hot Chips), Aug
2011.

[9] D. Kanter, “Knights Landing reshapes HPC,” Sep 2015.
[10] B. Wheeler, “Ampere maxes out at 128 cores,” Microprocessor Report,

The Linley Group, Jul 2020.
[11] T. R. Halfhill, “Thunderx3’s cloudburst of threads: Marvell previews

96-core 384-thread arm server processor,” Microprocessor Report, The
Linley Group, Apr 2020.

[12] D. Wentzlaff et al., “On-chip interconnection architecture of the tile
processor,” IEEE Micro, vol. 27, pp. 15–31, Sep/Oct 2007.

[13] S. Davidson et al., “The Celerity open-source 511-core RISC-V tiered
accelerator fabric: Fast architectures and design methodologies for fast
chips,” IEEE Micro, vol. 38, no. 2, pp. 30–41, Mar/Apr 2018.

[14] B. Bohnenstiehl et al., “KiloCore: A 32-nm 1000-processor computa-
tional array,” IEEE Journal of Solid-State Circuits (JSSC), vol. 52, no. 4,
pp. 891–902, Apr 2017.

[15] A. Olofsson, “Epiphany-V: A 1024-processor 64-bit RISC
system-on-chip,” Computing Research Repository (CoRR), vol.
arXiv:abs/1610.01832, Aug 2016.

[16] F. Zaruba, F. Schuiki, and L. Benini, “Manticore: A 4096-core RISC-
V chiplet architecture for ultraefficient floating-point computing,” IEEE
Micro, Mar/Apr 2021.

[17] J. Burgess, “RTX on: The NVIDIA Turing architecture,” Symp. on High
Performance Chips (Hot Chips), Aug 2019.

[18] M. Mantor, “7nm “Navi” GPU,” Symp. on High Performance Chips (Hot
Chips), Aug 2019.

[19] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis, “CuPy: A
NumPy-compatible library for NVIDIA GPU calculations,” Conf. on
Neural Information Processing Systems (NeurIPS), Dec 2017.



14

[20] A. Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” Conf. on Neural Information Processing Systems
(NeurIPS), Dec 2019.

[21] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” Symp. on Operating System Design and Implementation (OSDI),
Nov 2016.

[22] “cuGraph - GPU graph analytics,” Online Webpage, 2020 (accessed Nov
22, 2020), https://github.com/rapidsai/cugraph.

[23] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture optimizations
for exploiting memory-level parallelism,” Int’l Symp. on Computer
Architecture (ISCA), Jun 2004.

[24] T. E. Carlson, W. Heirman, O. Allam, S. Kaxiras, and L. Eeckhout,
“The Load Slice Core microarchitecture,” Int’l Symp. on Computer
Architecture (ISCA), Jun 2015.

[25] J. Smith, “Decoupled access/execute computer architectures,” ACM
Trans. on Computer Systems (TOCS), vol. 2, no. 4, pp. 289–308, Nov
1984.

[26] A. Brahmakshatriya et al., “Taming the zoo: The unified graphit
compiler framework for novel architectures,” Int’l Symp. on Computer
Architecture (ISCA), Jun 2021.

[27] H. Hoffmann, D. Wentzlaff, and A. Agarwal, “Remote store program-
ming,” Int’l Conf. on High Performance Embedded Architectures and
Compilers (HiPEAC), Jan 2010.

[28] “ATen: A TENsor library for C++11,” Online Webpage, 2020 (accessed
Nov 22, 2020), https://github.com/zdevito/ATen.

[29] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt, “A
high memory bandwidth FPGA accelerator for sparse matrix-vector
multiplication,” Symp. on FPGAs for Custom Computing Machines
(FCCM), May 2014.

[30] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang,
“Tensaurus: A versatile accelerator for mixed sparse-dense tensor com-
putations,” Int’l Symp. on High-Performance Computer Architecture
(HPCA), Feb 2020.

[31] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “Matraptor:
A sparse-sparse matrix multiplication accelerator based on row-wise
product,” Int’l Symp. on Microarchitecture (MICRO), Oct 2020.

[32] Y. Wang, P. Li, P. Zhang, C. Zhang, and J. Cong, “Memory partitioning
for multidimensional arrays in high-level synthesis,” Design Automation
Conf. (DAC), Jun 2013.

[33] D. R. MacIver, Z. Hatfield-Dodds, and many other contributors, “Hy-
pothesis: A new approach to property-based testing,” Journal of Open-
Source Software (JOSS), vol. 4, no. 43, Nov 2019.

[34] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “DRAMsim3: A
cycle-accurate, thermal-capable dram simulator,” Computer Architecture
Letters (CAL), Jul 2020.

[35] T. J. Ham, J. L. Aragón, and M. Martonosi, “DeSC: Decoupled supply-
compute communication management for heterogeneous architectures,”
Int’l Symp. on Microarchitecture (MICRO), Dec 2015.

[36] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and
T. Yamazaki, “Synergistic processing in Cell’s multicore architecture,”
IEEE Micro, vol. 26, no. 2, pp. 10–24, Mar 2006.

[37] A. Rovinski et al., “A 1.4 GHz 695 Giga RISC-V Inst/s 496-core
manycore processor with mesh on-chip network and an all-digital
synthesized PLL in 16nm CMOS,” Symp. on VLSI Technology and
Circuits (VLSI), Jun 2019.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” Computing Research Repository (CoRR), vol.
arXiv:abs/1512.03385, Dec 2015.

[39] Y. E. Wang, G.-Y. Wei, and D. Brooks, “Benchmarking TPU, GPU,
and CPU platforms for deep learning,” Computing Research Repository
(CoRR), vol. arXiv:abs/1907.10701, Jul 2019.

[40] A. Rovinski et al., “Evaluating Celerity: A 16nm 695 Giga-RISC-V
instructions/s manycore processor with synthesizable pll,” IEEE Solid-
State Circuits Letters (SSCL), vol. 2, no. 12, pp. 289–292, Dec 2019.

[41] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” Int’l Solid-State Circuits Conf. (ISSCC), Feb 2016.

[42] T. Chen et al., “DianNao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), Mar
2014.

[43] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” Int’l Symp. on Computer Architecture (ISCA), Jun
2017.

[44] T. Moreau, T. Chen, Z. Jiang, L. Ceze, C. Guestrin, and A. Krishna-
murthy, “VTA: An open hardware-software stack for deep learning,”
Computing Research Repository (CoRR), vol. arXiv:abs/1802.04799,
Aug 2018.

[45] M. B. Taylor et al., “Evaluation of the RAW microprocessor: An
exposed-wire-delay architecture for ILP and streams,” Int’l Symp. on
Computer Architecture (ISCA), Jun 2004.

[46] R. Prabhakar et al., “Plasticine: A reconfigurable architecture for parallel
paterns,” Int’l Symp. on Computer Architecture (ISCA), Jun 2017.

[47] K.-A. Tran, A. Jimborean, T. E. Carlson, K. Koukos, M. Själander, and
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