
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/330632471

PynqCopter - An Open-source FPGA Overlay for UAVs

Conference Paper · December 2018

DOI: 10.1109/BigData.2018.8622102

CITATIONS

0
READS

126

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Spector: An OpenCL FPGA Benchmark Suite View project

Underwater Sensor Networks View project

Brennan Cain

University of South Carolina

5 PUBLICATIONS   24 CITATIONS   

SEE PROFILE

Ryan Kastner

University of California, San Diego

286 PUBLICATIONS   4,993 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Brennan Cain on 05 January 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/330632471_PynqCopter_-_An_Open-source_FPGA_Overlay_for_UAVs?enrichId=rgreq-a44d36dbf9a57ce5ccb566815d67aea7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDYzMjQ3MTtBUzo5NzY2NTk2NDk5Mzc0MDhAMTYwOTg2NTIxNDI1Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/330632471_PynqCopter_-_An_Open-source_FPGA_Overlay_for_UAVs?enrichId=rgreq-a44d36dbf9a57ce5ccb566815d67aea7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDYzMjQ3MTtBUzo5NzY2NTk2NDk5Mzc0MDhAMTYwOTg2NTIxNDI1Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Spector-An-OpenCL-FPGA-Benchmark-Suite?enrichId=rgreq-a44d36dbf9a57ce5ccb566815d67aea7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDYzMjQ3MTtBUzo5NzY2NTk2NDk5Mzc0MDhAMTYwOTg2NTIxNDI1Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Underwater-Sensor-Networks-5?enrichId=rgreq-a44d36dbf9a57ce5ccb566815d67aea7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDYzMjQ3MTtBUzo5NzY2NTk2NDk5Mzc0MDhAMTYwOTg2NTIxNDI1Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a44d36dbf9a57ce5ccb566815d67aea7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDYzMjQ3MTtBUzo5NzY2NTk2NDk5Mzc0MDhAMTYwOTg2NTIxNDI1Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Brennan-Cain?enrichId=rgreq-a44d36dbf9a57ce5ccb566815d67aea7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDYzMjQ3MTtBUzo5NzY2NTk2NDk5Mzc0MDhAMTYwOTg2NTIxNDI1Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Brennan-Cain?enrichId=rgreq-a44d36dbf9a57ce5ccb566815d67aea7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDYzMjQ3MTtBUzo5NzY2NTk2NDk5Mzc0MDhAMTYwOTg2NTIxNDI1Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-South-Carolina?enrichId=rgreq-a44d36dbf9a57ce5ccb566815d67aea7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDYzMjQ3MTtBUzo5NzY2NTk2NDk5Mzc0MDhAMTYwOTg2NTIxNDI1Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Brennan-Cain?enrichId=rgreq-a44d36dbf9a57ce5ccb566815d67aea7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDYzMjQ3MTtBUzo5NzY2NTk2NDk5Mzc0MDhAMTYwOTg2NTIxNDI1Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ryan-Kastner?enrichId=rgreq-a44d36dbf9a57ce5ccb566815d67aea7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDYzMjQ3MTtBUzo5NzY2NTk2NDk5Mzc0MDhAMTYwOTg2NTIxNDI1Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ryan-Kastner?enrichId=rgreq-a44d36dbf9a57ce5ccb566815d67aea7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDYzMjQ3MTtBUzo5NzY2NTk2NDk5Mzc0MDhAMTYwOTg2NTIxNDI1Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_California_San_Diego2?enrichId=rgreq-a44d36dbf9a57ce5ccb566815d67aea7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDYzMjQ3MTtBUzo5NzY2NTk2NDk5Mzc0MDhAMTYwOTg2NTIxNDI1Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ryan-Kastner?enrichId=rgreq-a44d36dbf9a57ce5ccb566815d67aea7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDYzMjQ3MTtBUzo5NzY2NTk2NDk5Mzc0MDhAMTYwOTg2NTIxNDI1Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Brennan-Cain?enrichId=rgreq-a44d36dbf9a57ce5ccb566815d67aea7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDYzMjQ3MTtBUzo5NzY2NTk2NDk5Mzc0MDhAMTYwOTg2NTIxNDI1Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


PynqCopter - An Open-source FPGA Overlay for UAVs

Brennan Cain, Zain Merchant, Indira Avendano, Dustin Richmond, Ryan Kastner

Abstract— FPGAs are a computing platform that excel
in performing signal processing, control, networking,
and security in a high performance and power efficient
manner. This makes FPGAs attractive for unmanned
aerial vehicles (UAVs) especially as they require smaller
payloads and are processing multiple high data rate
input sources (e.g. cameras, lidar, radar, gyroscopes,
accelerometers). Unfortunately, FPGAs are notoriously
difficult to program and they require significant hard-
ware design expertise. However, there are newly released
design tools aimed at making FPGAs easier to use, which
drove the initial hypothesis for this paper: could three
undergraduates program an FPGA to control a UAV in
10 weeks? The result of the experiment is PynqCopter –
an open source control system implemented on an FPGA.
We created and tested a UAV overlay which is able to
run multiple computations in parallel, allowing for the
ability to process high amounts of data at runtime.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are pow-
erful and efficient computer chips that customize im-
portant functions to make them faster than CPUs and
GPUs [1]. A drawback to using FPGAs is their high
barrier to entry. They require advanced hardware design
skills like programming in Verilog, interfacing with low
level input / output (I/O), and fail to provide a good
high level programming environment[2].

Several recent efforts aim to simplify FPGA design
and implementation. The first is the emergence of
capable High Level Synthesis (HLS) tools [3], [4].
Xilinx Vivado HLS tools take a high level language
such as C or C++ and generate Verilog or VHDL. These
languages may be used with existing design suites, such
as the Vivado Design Suite, to generate a bitstream

Brennan Cain is with the University of South Carolina,
Columbia, SC, USA. bscain@email.sc.edu

Zain Merchant is with the University of Texas at Dallas, Richard-
son, TX, USA. ztm140130@utdallas.edu

Indira Avendano is with the University of Central Florida,
Orlando, FL, USA. indirajhenny@knights.ucf.edu

Dustin Richmond is with the University of Washington, Seattle,
WA, USA. dustinar@uw.edu

Ryan Kastner is with the University of California, San Diego,
CA, USA. kastner@ucsd.edu

Fig. 1. PYNQ development board by Xilinx with ZYNQ-
7020 SoC chipset including an ARMv7 dual-core processor and
programmable logic fabric.

for programming the Programmable Logic (PL) of the
FPGA.

A new development in the usability of FPGAs is
the Xilinx PYNQ board Figure 1. This board utilizes
a Zynq Z7020 chip which contains a dual core ARM
processor as well as a PL fabric. PYNQ adds to the
default system by adding a set of Python libraries for
interacting with the PL. The flow of this system is that
a user designs the individual cores in C or C++, links
them together in a block design, compiles it into a
bitstream and .tcl file, and lastly, uses a Python function
to flash these files (collectively called the Overlay) to
the PL. When flashed, Python drivers are instantiated
for each core to either the default or a custom driver
created by the user. The PYNQ libraries can then be
used to interact with those IP cores. [5]

In this paper, we demonstrate an open source overlay
for the PYNQ-Z1 board. This overlay includes source
files for each IP core, Python drivers to interact with
and run the cores, and a block design to connect the
IP cores. A video of the PynqCopter in flight can be
found at https://youtu.be/pmFRnbAjpZQ

The main contributions of this paper are:

• A novel hardened open-source control system.
• Documentation on the process of developing HLS

applications.



A. Paper Overview

In this paper, we present our FPGA-based hexacopter
design process in a way that educators or students may
be able to recreate it without expertise in the subject of
FPGA design. Section 2 will describe related research
in the field of using FPGAs for flight hardware, the
adoption of FPGAs by the hobbyist and general purpose
computing communities, as well as recent educational
initiatives and projects to teach hardware design to
more people. Section 3 will explain each IP core we
designed, how they communicate between each other,
and how a user may interact with the system. Section
4 will focus on the physical design of our system as
well as why we chose to use certain components and
how they interconnect. In Section 5, we explain how an
educator may best use this system to teach computer
architecture and controls using our free and open source
system. Section 6 gives potential uses of our system as
well as future works we would like to see done.

II. RELATED WORK

In-flight computation has come to the forefront of re-
search in recent years[6]. Projects like the Small Adap-
tive Flight Control System at Georgia Tech [7], and
the FPGA Based Stability System from The University
of Queensland [8] seek to improve in flight perfor-
mance and controls using re-programmable hardware.
Schlender et al. at the Carl von Ossietsky University of
Oldenburg [9] taught a course on developing hardware
for UAVs using a ZYNQ 7020 SoC. In the system used
by his course, the students developed C programs to be
compiled to run on soft processing cores. Soft process-
ing cores are essentially microprocessors, such as those
found in an Arduino, that are implemented within the
PL fabric. This method is good for teaching students
about utilizing C for pipelineing in a microprocessor,
but does not allow the student to think about how their
logic functions at the lower, hardware level.

Hobbyists have attempted to lower the barrier of
entry to FPGA development by developing tutorials
for new users to create their own cores. A list of
tutorials is found here: http://www.fpgadeveloper.com/.
Although the guides and examples are good for de-
signing the simple flow of instructions and data from
CPU→FPGA→CPU, they do not explain how to allow
the FPGA to run self-sufficiently. We used these guides
to learn about individual cores, but these tutorials did
not provide sufficient information on allowing cores
to intercommunicate and talk to external devices. One
book that we used in the development of our system

Fig. 2. General flow of data through the PynqCopter system. The
top layer shows external devices which connect to the second layer.
The data flows through to the fourth layer which generates signals
to drive the external motors in the last layer.

provides users the ability to learn more deeply about
the use and programming of FPGAs by providing im-
plementations of complex algorithms [4]. Other books
and articles are good when attempting to create lower
latency algorithms [10] or learn about how the IPs
interconnect at a higher level [11].

Other projects like the Open Vision Computer[12]
and XFOpenCV[13] seek to do more with the com-
putational resources on the FPGA by implementing
commonly used algorithms in the PL. We use them
to justify the need of better computing hardware for
both flight control and a better performing system for
in-flight computations.

III. ARCHITECTURE

This project differentiates itself from other FPGA-
based flight controllers by implementing a hardened
controller, making way for possible latency improve-
ments and overall performance. In this context, hard-
ened refers to the fact that no soft-core CPU (ex.
MicroBlaze, Nios) was used. Beyond the hardened
control, the system also never passes data through the
CPU. This leads to a system fully on the PL fabric of
the FPGA with no need to interact with the CPU other
than for configuration.



A. Intellectual Processor Cores and General Data
Flow

Our general data flow can be visualized from Fig-
ure 2. We take a modular approach in the design of the
platform, not only to simplify development, but also to
clearly define scopes of the different tasks. Overall, we
process raw data values from our sensors and remote
controller, use them in calculations that can stabilize
and control the UAV, and push an output signal to our
electronic speed controllers (ESC) in a format they can
recognize to control the 6 brushless DC motors.

The IP cores, as well as their interfaces, used in our
block design are explained below:

1) Sensor IP Cores: These are separate IP cores, but
are utilized at the same stage of the data path.
The IMU sensor IP core is used to configure and
collect data from our IMU. The core utilizes the
AXI IIC Bus Interface to communicate with the
sensors over I2C, configures them to receive the
correct data in a format we can use, and reads
values from them after proper configuration. The
data is then converted into a 16 bit fixed-width
integer value representing the current yaw, pitch,
roll, and altitude, which can then be sent to other
IP cores for normalization and processing. The
data can also be configured to be used in attitude
or rate modes (providing angular velocity rather
than position).

2) RC Receiver IP Core: The receiver IP core
samples the Pulse Width Modulation (PWM)
signal received from our RC receiver to
determine the duty cycle it is receiving, and
converts this duty cycle value to a 32 bit
unsigned integer. This 32 bit unsigned integer
can then be used by other IP cores as the input
target value we want for our hexacopter.

3) Normalizer IP Core: To properly use data we
are receiving from these multiple sources, we
need them to be in a common format and range.
Data from both our sensor and receiver IP cores
are pipelined into the Normalizer IP, which can
normalize everything into the same units and
within expected output ranges. This is an impor-
tant intermediary stage for proper data formatting
and processing. Afterwards, the data is now ready
to be used for calculations to enable stable flight.
Example outputs from our Normalizer IP core is
shown with the inputs in Figure 3.

Fig. 3. Plot of the inputs on the x axis from a minimum value of
100000 ticks to a maximum 200000 and the outputs from zero to
one on the y axis.

4) Controller IP Core: This core is designed to
serve as a Proportional-Integral-Derivative (PID)
controller, which is a type of general purpose
closed-loop control algorithm. Here we take our
target values obtained from the RC receiver, our
measured values from the sensors, and our PID
constants (configurable via Jupyter Notebooks
during tuning stage) to calculate a estimated
roll and pitch values that we can send to our
motors to execute. Using this IP core, we try to
stabilize our roll and pitch during flight; the PID
helps take into account proportional differences,
accumulated errors, and rate of change to make
sure we dont overshoot our target values. For
yaw and thrust, the controller is fully proportional
which is taken into account during the mixing.
The mixing is done in this core and our output
data is prepared into six fixed point duty cycle
outputs. The output of this mixer is shown in
Figure 4.

5) PWM IP Core: This is the final IP core of
our system. Here is where all of our computed
values can be turned into PWM signals which
we feed to the 6 ESCs in our hexacopter. We
take in data from the motor mixer IP, use each
of the computed values we have assigned to the
individual motors and turn them into resulting
PWM signals, and output them to pins that will
be fed to the ESCs, thus controlling each of the
motors in our UAV. Example outputs from this



Fig. 4. Output of the 6-motor mixer given changing RPTY inputs.
The changes being applied are on the x axis with the signals given
to individual motors on the y axis. T, R, P, and Y refer to thrust,
roll, pitch, and yaw respectively with the + or - being whether they
are increasing or decreasing in the area.

Fig. 5. Output of the 6-motor PWM generator with increasing duty
cycles and constant frequencies. The PWM cycles were constantly
increased over the duration of the test. The duty cycle at the start
was highest at the top and lowest at the bottom.

core over time are shown in Figure 5.

Through these steps we are able to utilize sensors
and designate input to properly control and fly our
PYNQcopter. All of the IP cores mentioned above are
written in HLS to be fully hardened on the FPGA. The
only communication with the CPU is to set constants
for the controller and to start/stop IP cores.

B. Inter-IP Communication

The primary communication methods and protocols
in this project are the Advanced Extensible Interface
(AXI), Inter-Integrated Circuit (I2C, I2C, or IIC), Pulse-
Width Modulation (PWM), and direct.

1) AXI: Most communication within the pro-
grammable logic fabric of the FPGA uses the AXI
interface. This interface allows two IP cores to agree
on when data is ready to be used and keeps IP cores
safe from race conditions. From the perspective of
the individual IP cores, we used 3 interfaces within
this family: M AXI, S AXILITE, and AXI FIFO. The
M AXI interface allows an IP core to request or to
send data to another IP core which it may subscribe
to using a slave interface. The M in M AXI stands
for master and this interface represents a full AXI
master. S AXILITE subscribes to a master and allows
the master to read or write a single word of information
at a time. AXI FIFO acts as a master AXI interface
which can be written to multiple times within the same
clock cycle. This is a First-In-First-Out shift register
which allows for some data to accumulate and be used
over several clock ticks.

2) I2C: The I2C interface is used for communication
with the sensors. Vivado Design Suite supplies an AXI
IIC IP core that can be used for data communication via
an AXI FIFO. This FIFO passes data into the AXI IIC
core which communicates with the external GPIO pins
and returns values given by the sensors. Using I2C, we
are able to communicate with both of our sensors using
the same two data/clock lines. The abstraction given by
the AXI IIC core allows us to avoid re-implementing
the protocol ourselves [14].

3) Pulse-Width Modulation: Pulse-Width Modula-
tion (PWM) is used for communication from the on-
board radio antenna, as well as to the ESCs. The core
theory behind this communication technique is that
by keeping a consistent signal frequency, or placing
every leading edge at the same interval, and changing
the time duration of the high signal, values can be
transmitted robustly without the need for verification.
We received PWM signals in 6 channels from the
FrSky X8R receiver and generated 6 channels of PWM
signals, which were sent to the ESCs.

4) Direct: The direct method of communication is
with no true protocol in place. Communication over
PWM is not a core protocol implemented in Vivado.
The protocol-less way to transfer data is using the
Arbitrary Precision None Interface (AP NONE). PWM
generation and reading was done by setting AP NONE
bits high or low, which is considered unsafe in other
applications. In our application this is fine. However,
transferring data using this approach is normally dan-
gerous.



Fig. 6. Fully-assembled PynqCopter UAV including batteries,
sensors, controller, propeller guards, and propulsion system.

IV. PHYSICAL SYSTEM

UAVs are generally comprised of several basic parts:
a radio receiver, controller, sensors, propulsion systems,
and a chassis. This section will go over each of
these parts, how they connect together logically and
physically, and why we used each part for our system.
Figure 6 is a photo of our completed UAV.

A. Radio Receiver

We chose to use an FrSky Taranis 16-channel RC
radio with an X8R 8-channel receiver. The reason for
this choice was to allow us to have a minimum of six
channels of communication so that we could switch
operating modes using the switches provided on the
controller. Another key feature of this device is that
the 8 channels are broken out into 8 different lines. We
physically connected the first six channels to Arduino
analog pins 0 through 5 on the PYNQ board. Within
the programmable logic, we passed the PWM signal
through a 100 register synchronizer to stabilize the
rising and falling edges, and prevent errors that occur in
the transition from high to low and low to high states.
The signals are then passed into the RC Receiver IP.

B. Controller

The core of this project’s hexacopter system design
focuses on the controller. We utilized a Xilinx PYNQ-
Z1 board which consisted of a Xilinx Z7020 SoC.
The ZYNQ-7000 line of SoCs consist of a dual-core
ARMv7 microprocessor as well as a programmable
logic fabric. Using the PYNQ libraries, we were able
to use Python to interact with the registers of the IP
cores implemented within the PL fabric. This made it

Fig. 7. Hookup diagram for the PynqCopter’s sensors, RC receiver,
and ESCs. Red denotes 3.3V power, black denotes ground, blue
denotes I2C data, green denotes I2C clock, and purple denotes
PWM.

easy for us to tune the various parts of the system in a
scripting language. Figure 7 shows a hookup diagram
for the Sensors, RC Receiver, and ESCs to the PYNQ
board.

C. Sensors

To obtain the hexacopters state, we chose the
Adafruit BNO055 IMU sensor and BME280 Barometer
sensor. These sensors receive information regarding
the hexacopters attitude in space, angular velocity,
magnetic heading, and altitude. The current physical
hexacopters design has been implemented and tested
with only the IMU sensor, since the latest system design
bypasses altitude and uses the raw thrust given by
the pilot. The sensors are connected to the PYNQ-Z1
through the SCL and SDA pins in the Arduino headers
on the PYNQ board and to the common 3.3V and GND
pins. Inside the PL, they are connected to the AXI IIC
IP via tri-state pins.

D. Chassis, Battery, and Propulsion System

We chose to use an off-the-shelf propulsion system
by DJI, the Flamewheel F550 hex-rotor with 15A Opto
ESCs. This frame and propulsion system was chosen
for two main reasons: moderate lift and a large user
base from ArduPilot and other projects. An application
which we will discuss in the future work section
requires several cameras or a lidar to be mounted to the
chassis. This propulsion system will allow the mounting
of up to 2kg of additional cameras and possibly a
lidar. Since the ESCs on this frame are popular within
the hobbyist space, their widespread use has created



detailed documentation on them, which allowed us to
easily implement and interface. The PYNQ board was
mounted using zip ties and double sided tape to the
chassis on the top center to allow the IMU to be near
the center of rotation along each axis. The ESCs were
connected to Arduino pins 8 through 13. The grounds
were common and connected to the ground pin. The
ESCs’ power cables were soldered per the instructions
in the F550 kit to the chassis’ PCB. A battery cable
with a male connector was then soldered to the PCB,
allowing a battery to be plugged and unplugged. We
placed a 5v converter in line of the battery to power
our PYNQ board and RC Receiver.

E. Additional Considerations

In the development of this system, we found several
improvements to the base system which were helpful
regarding both the safety of the system as well as
its stability in flight. On the safety side, we added
propeller guards and legs. These prevented the UAV
from hitting objects with the blades and lowered the
possibility of damage to person or property. The legs
allowed the UAV to land with some momentum without
damaging the batteries and mounted equipment. The
batteries were mounted on the bottom of the UAV
to create a pendulum effect. This placed the system
into a stable equilibrium in the roll and pitch axes. A
drawback to this design, however, is the pendulum-like
oscillatory motion which occurred with an improperly
tuned controller. A way to fix this would be to use
thinner batteries and mount them between the two
parallel plates in the center of the UAV.

V. EDUCATIONAL USE

FPGAs are an important tool that can be used by
nearly anyone in the electronics and computer science
industry, and open up more possibilities to what can
be done with computing technology. Xilinx, Intel, and
other FPGA manufacturers hope that with the incor-
poration of new tools seeking to simplify hardware
development, such as HLS, there can be a higher rate
of adoption for FPGAs. We as undergraduate computer
science and engineering students with little background
in hardware development, found tools like HLS and the
Vivado Design Suite relatively straight forward when
compared to Verilog or VHDL.

Traditionally computation power has been a signif-
icant bottleneck in real time computing applications
such as machine learning, computer vision, digital
signal processing, and flight control to name a few.

By creating a useful, well documented, open-source
project, we can help enlarge the community of those
working with hardware by bringing in more people
from different fields that can benefit from application
specific hardware design. We not only sought to teach
ourselves how to use FPGAs and HLS, but also demon-
strate some of the possibilities and applications that
others can apply to their own project. We have done
this by making education a primary motivating factor
behind our project this summer.

We have documented our entire learning process
using the Xilinx Vivado Design Suite to develop the
necessary IP cores for a hardened hexacopter controller
system. We detail every step that went into the project’s
development so that even novice users can learn from
and utilize our designs in their own hardware design
projects.

Our source code along with sample overlays can be
found in the UCSD PynqCopter repository on github
here: https://github.com/UCSD-E4E/pynq-copter. The
repository has two primary sub-directories:

• The ’/notebooks’ folder directory contains the
Jupyter Notebooks files with the instructions and
source code to activate and interact with the IP
cores on the Pynq-Z1 board.

• The ’/pynqcopter’ folder directory contains the
bitstreams of completed block designs and their
accompanying .tcl files, which can be flashed onto
the PYNQ-Z1 board as overlays via the PYNQ
libraries. It also contains an IP folder directory
containing synthesized HLS IP Cores for easy
access and integration into a Vivado block design.

Further documentation for educators, hobbyists, and
those wishing to learn how to develop our system in
greater detail can be found on our team’s Google Drive
here: http://goo.gl/GLRXiC.

VI. FUTURE WORK

Primarily, our goal is for this project to be used
in classes and by hobbyists, allowing them to quickly
learn how to effectively design hardware and controls.
On top of this, we hope that others will contribute
to our system and documentation by adding additional
multicopter configurations and sensor drivers.

Other projects, such as the E4E’s efforts in mangrove
classification, can benefit from this system as well.
Mangrove classification currently relies on UAVs being
flown over Mexico’s mangrove forests to collect aerial
imagery data[15]. This data is later used in the lab for
species classification and biomass density estimation,



but sometimes experiences problems due to incomplete
or incorrect data being collected. Rather than plan a
return trip, this classification could be done while the
UAV is in flight, adjusting itself and repeating sections
with bad data. This project utilizes a convolutional
neural network (CNN) and can take advantage of
improvements in visual processing on FPGAs[16] as
well as in placing CNNs on FPGAs[17], [18].

UAVs are also now widely used for LIDAR mea-
surements, such as to map through the South American
canopy when searching for Maya temples in archaeo-
logical expeditions[19]. These applications depend on
precise timing of measurements to generate 3 dimen-
sional LIDAR maps, but has currently been limited by
the operational capabilities of the on board microcon-
troller and CPU. Designing a PL fabric specific to this
application might be a way to overcome this issue and
help with the project.

With research going into the use of FPGAs for
digital signal processing [20], [21], we also hope to
use this system to extend and improve a radio collar
tracking project[22] by taking advantage of hardware
acceleration in signal processing.

VII. CONCLUSIONS

Our goals for this paper were to show that under-
graduates are able to use current tools and technologies
to develop hardened programs for control systems.
Through our time in the University of California, San
Diego Engineers for Exploration Research Experience
for Undergraduates program, and with the guidance
received from our supervisors, we have been able to
design a working, hardened FPGA hexacopter.

After being exposed to new and forthcoming devel-
opments in making hardware design an easier experi-
ence, we have come to the conclusion that it can be
done with relatively little prerequisite knowledge and
see future adoption throughout industry and academia.
The tools have been abstracted to a level at which
someone with hobby electronics and programming ex-
perience could pick up and develop a working product
suited to their needs. In addition to creating a hexa-
copter that can be used for future projects, we’ve cre-
ated a pool of resources that can be used as education
materials for those seeking to work with FPGAs. We
believe these resources can help users ease into working
at a lower technical level than they were previously
exposed to.

ACKNOWLEDGMENT

The authors would like to thank the National Science
Foundation for its support through the Research Expe-
rience for Undergraduates. The authors would also like
to thank the Engineers for Exploration group in the
Jacob’s School of Engineering at UCSD for hosting
the REU program, as well as for their guidance, and
support.

REFERENCES

[1] J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A
performance and energy comparison of fpgas, gpus, and
multicores for sliding-window applications,” in Proceedings
of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, ser. FPGA ’12. New York,
NY, USA: ACM, 2012, pp. 47–56. [Online]. Available:
http://doi.acm.org/10.1145/2145694.2145704

[2] D. Bacon, R. Rabbah, and S. Shukla, “Fpga programming
for the masses,” Queue, vol. 11, no. 2, pp. 40:40–40:52,
Feb. 2013. [Online]. Available: http://doi.acm.org/10.1145/
2436696.2443836

[3] J. Matai, D. Richmond, D. Lee, and R. Kastner, “Enabling
fpgas for the masses,” CoRR, vol. abs/1408.5870, 2014.
[Online]. Available: http://arxiv.org/abs/1408.5870

[4] R. Kastner, J. Matai, and S. Neuendorffer, “Parallel
Programming for FPGAs,” ArXiv e-prints, May 2018.
[Online]. Available: https://arxiv.org/abs/1805.03648

[5] Xilinx, “Pynq: Python productivity for zynq,” http://www.
pynq.io/, accessed: 2018-10-07.

[6] M. Bouhali, F. Shamani, Z. E. Dahmane, A. Belaidi, and
J. Nurmi, “Fpga applications in unmanned aerial vehicles -
a review,” in Applied Reconfigurable Computing, S. Wong,
A. C. Beck, K. Bertels, and L. Carro, Eds. Cham: Springer
International Publishing, 2017, pp. 217–228. [Online].
Available: https://doi.org/10.1007/978-3-319-56258-2 19

[7] H. Christopherson, W. Pickell, A. Koller, S. Kannan,
and E. Johnson, ser. Infotech@Aerospace Conferences.
American Institute of Aeronautics and Astronautics, Sep
2004, ch. Small Adaptive Flight Control Systems for
UAVs Using FPGA/DSP Technology, 0. [Online]. Available:
https://doi.org/10.2514/6.2004-6556

[8] B. Eizad, A. Doshi, and A. Postula, “Fpga based stability
system for a small-scale quadrotor unmanned aerial vehicle,”
in Proceedings of the 8th FPGAWorld Conference, ser.
FPGAWorld ’11. New York, NY, USA: ACM, 2011,
pp. 3:1–3:6. [Online]. Available: http://doi.acm.org/10.1145/
2157871.2157874

[9] H. Schlender, S. Schreiner, M. Metzdorf, K. Grüttner, and
W. Nebel, “Teaching mixed-criticality: Multi-rotor flight
control and payload processing on a single chip,” in
Proceedings of the WESE’15: Workshop on Embedded and
Cyber-Physical Systems Education, ser. WESE’15. New
York, NY, USA: ACM, 2015, pp. 9:1–9:8. [Online]. Available:
http://doi.acm.org/10.1145/2832920.2832929

[10] G. Wang, W. Gong, and R. Kastner, Operation
Scheduling: Algorithms and Applications. Dordrecht:
Springer Netherlands, 2008, pp. 231–255. [Online]. Available:
https://doi.org/10.1007/978-1-4020-8588-8 13



[11] D. Richmond, J. Blackstone, M. Hogains, K. Thai, and
R. Kastner, “Tinker: Generating custom memory architectures
for altera’s opencl compiler,” in 2016 IEEE 24th Annual
International Symposium on Field-Programmable Custom
Computing Machines (FCCM), May 2016, pp. 21–24.
[Online]. Available: https://doi.org/10.1109/FCCM.2016.13

[12] M. Quigley, K. Mohta, S. S. Shivakumar, M. Watterson,
Y. Mulgaonkar, M. Arguedas, K. Sun, S. Liu, B. Pfrommer,
V. Kumar, and C. J. Taylor, “The open vision computer: An
integrated sensing and compute system for mobile robots,”
2018. [Online]. Available: https://arxiv.org/abs/1809.07674

[13] S. Neuendorffer, T. Li, and D. Wang, Accel-
erating OpenCV Applications with Zynq-7000 All
Programmable SoC using Vivado HLS Video Li-
braries. [Online]. Available: https://www.xilinx.com/support/
documentation/application notes/xapp1167.pdf

[14] AXI IIC Bus Interface, Xilinx, October 2016, v2.0. [Online].
Available: https://www.xilinx.com/support/documentation/ip
documentation/axi iic/v2 0/pg090-axi-iic.pdf

[15] P. Ezcurra, E. Ezcurra, P. P. Garcillán, M. T. Costa, and
O. Aburto-Oropeza, “Coastal landforms and accumulation of
mangrove peat increase carbon sequestration and storage,”
Proceedings of the National Academy of Sciences, vol.
113, no. 16, pp. 4404–4409, 2016. [Online]. Available:
http://www.pnas.org/content/113/16/4404

[16] S. Asano, T. Maruyama, and Y. Yamaguchi, “Performance
comparison of fpga, gpu and cpu in image processing,”
in 2009 International Conference on Field Programmable
Logic and Applications, Aug 2009, pp. 126–131. [Online].
Available: https://doi.org/10.1109/FPL.2009.5272532

[17] E. Wang, J. J. Davis, and P. Y. K. Cheung, “A
PYNQ-based Framework for Rapid CNN Prototyping,” in
IEEE Symposium on Field-programmable Custom Computing
Machines (FCCM), 2018. [Online]. Available: https://spiral.
imperial.ac.uk/handle/10044/1/57937

[18] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott,
P. Leong, M. Jahre, and K. Vissers, “Finn: A framework
for fast, scalable binarized neural network inference,”
in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA
’17. ACM, 2017, pp. 65–74. [Online]. Available: https:
//arxiv.org/abs/1612.07119

[19] M. A. Canuto, F. Estrada-Belli, T. G. Garrison, S. D.
Houston, M. J. Acuña, M. Kováč, D. Marken, P. Nondédéo,
L. Auld-Thomas, C. Castanet, D. Chatelain, C. R.
Chiriboga, T. Drápela, T. Lieskovský, A. Tokovinine,
A. Velasquez, J. C. Fernández-Dı́az, and R. Shrestha,
“Ancient lowland maya complexity as revealed by
airborne laser scanning of northern guatemala,” Science,
vol. 361, no. 6409, 2018. [Online]. Available: http:
//science.sciencemag.org/content/361/6409/eaau0137

[20] S. Mirzaei, “Design methodologies and architectures
for digital signal processing on fpgas,” 2010.
[Online]. Available: http://cseweb.ucsd.edu/∼kastner/papers/
phd-thesis-mirzaei.pdf

[21] R. Tessier and W. Burleson, “Reconfigurable computing for
digital signal processing: A survey,” Journal of VLSI signal
processing systems for signal, image and video technology,
vol. 28, no. 1, pp. 7–27, May 2001. [Online]. Available:
https://doi.org/10.1023/A:1008155020711

[22] G. A. M. d. Santos, Z. Barnes, E. Lo, B. Ritoper,
L. Nishizaki, X. Tejeda, A. Ke, H. Lin, C. Schurgers,
A. Lin, and R. Kastner, “Small unmanned aerial vehicle

system for wildlife radio collar tracking,” in 2014 IEEE
11th International Conference on Mobile Ad Hoc and
Sensor Systems, Oct 2014, pp. 761–766. [Online]. Available:
https://doi.org/10.1109/MASS.2014.48

View publication statsView publication stats

https://www.researchgate.net/publication/330632471

